Search Results

open access

Raman and NMR Relaxation Studies of Molecular Dynamics in Liquids

Description: Raman vibrational bands are sensitive to fluctuations in the molecular environment. Variations in the bandwidth and peak position can then be utilized to monitor molecular forces and interactions present in condense phases. Nuclear Magnetic Resonance (NMR) provides a convenient probe for the study of molecular reorientation in liquids since nuclear spin relaxation times are dependent on the details of molecular motion. Presented here is the solvent study of the Raman bandwidths and frequency d… more
Date: August 1987
Creator: Rodriguez, Arturo A. (Arturo Angel)
Partner: UNT Libraries
open access

Molecular Dynamics in the Liquid Phase by FT-NMR, FT-IR and Laser Raman Lineshape Analysis

Description: Nuclear magnetic resonance (NMR) provides a convenient probe for the study of molecular reorientation in liquids because nuclear spin-lattice relaxation times are dependent upon the details of molecular motion. The combined application of Raman and Infrared (IR) lineshape analysis can furnish more complete information to characterize the anisotropic rotation of molecules. Presented here are the studies of NMR relaxation times, together with Raman/IR Mneshape analysis of the solvent and temperat… more
Date: August 1988
Creator: Chen, Fu-Tseng Andy
Partner: UNT Libraries
open access

Raman and NMR Investigation of Molecular Reorientation and Internal Rotation in Liquids

Description: Molecular rotational motions are known to influence both Raman scattering of light and nuclear spin relaxation. Therefore, the application of Raman bandshape analysis and NMR relaxation time measurements to probe molecular dynamics in liquids will provide us with a deeper understanding of the dynamical behavior and structure of molecules in the liquid phase. Presented here are (i) studies of molecular reorientation of acetonitrile in the neat liquid phase and in solution by Raman bandshape ana… more
Date: December 1991
Creator: Yuan, Peng
Partner: UNT Libraries
open access

FT-NMR and Raman Spectroscopic Studies of Molecular Dynamics in Liquids

Description: NMR relaxation and Raman lineshape analysis are well known methods for the study of molecular reorientational dynamics in liquids. The combination of these two methods provides another approach to tackle the characterization of molecular dynamics in liquids. Investigations presented here include (1) NMR relaxation study of polycyclic compounds in solution, (2) the study of nitromethane reorientational dynamics using the NMR and Raman methods, and (3) Raman lineshape analysis of reorientation he… more
Date: December 1993
Creator: Wang, Kuen-Shian
Partner: UNT Libraries
open access

NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes

Description: Investigations presented here are (a) the study of reorientational dynamics and internal rotation in transition metal complexes by NMR relaxation experiments, and (b) the study of ligand exchange dynamics in transition metal complexes by exchange NMR experiments. The phenyl ring rotation in Ru3(CO)9(μ3-CO)(μ3-NPh) and Re(Co)2(CO)10(μ3- CPh) was monitored by 13C NMR relaxation experiments to probe intramolecular electronic and/or steric interactions. It was found that the rotation is relatively … more
Date: May 1996
Creator: Wang, Dongqing
Partner: UNT Libraries
open access

Computational Modeling of Small Molecules

Description: Computational chemistry lies at the intersection of chemistry, physics, mathematics, and computer science, and can be used to explain the behavior of atoms and molecules, as well as to augment experiment. In this work, computational chemistry methods are used to predict structural and energetic properties of small molecules, i.e. molecules with less than 60 atoms. Different aspects of computational chemistry are examined in this work. The importance of examining the converged orbitals obtained … more
Date: December 2015
Creator: Weber, Rebecca J.
Partner: UNT Libraries
open access

Computational Simulations of Cancer and Disease-Related Enzymatic Systems Using Molecular Dynamics and Combined Quantum Methods

Description: This work discusses applications of computational simulations to enzymatic systems with a particular focus on the effects of various small perturbations on cancer and disease-related systems. First, we cover the development of carbohydrate-based PET imaging ligands for Galectin-3, which is a protein overexpressed in pancreatic cancer tumors. We uncover several structural features for the ligands that can be used to improve their binding and efficacy. Second, we discuss the AlkB family of enzym… more
Date: May 2018
Creator: Walker, Alice Rachel
Partner: UNT Libraries
Back to Top of Screen