Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Date: May 2008
Creator: Srivastava, Ashish Kumar
Description: This study deals with crystal orientation effect along with the effects of microstructure on the pile-ups which affect the nanoindentation measurements. Two metal classes, face centered cubic (FCC) and body centered cubic (BCC, are dealt with in the present study. The objective of this study was to find out the degree of inaccuracy induced in nanoindentation measurements by the inherent pile-ups and sink-ins. Also, it was the intention to find out how the formation of pile-ups is dependant upon the crystal structure and orientation of the plane of indentation. Nanoindentation, Nanovision, scanning electron microscopy, electron dispersive spectroscopy and electron backscattered diffraction techniques were used to determine the sample composition and crystal orientation. Surface topographical features like indentation pile-ups and sink-ins were measured and the effect of crystal orientation on them was studied. The results show that pile-up formation is not a random phenomenon, but is quite characteristic of the material. It depends on the type of stress imposed by a specific indenter, the depth of penetration, the microstructure and orientation of the plane of indentation. Pile-ups are formed along specific directions on a plane and this formation as well as the pile-up height and the contact radii with the indenter ...
Contributing Partner: UNT Libraries
Indentation induced deformation in metallic materials.

Indentation induced deformation in metallic materials.

Date: December 2005
Creator: Vadlakonda, Suman
Description: Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materials responses to deformation at low and high loads is addressed in this study. A study on indenter geometry, which has a huge influence on the contact area and subsequently the hardness and modulus value, has been attempted. Deformation mechanisms that govern the plastic flow in materials at low loads of indentation and their sensitivity to the rate of strain imparted has been studied. A transition to elastic, plastic kind of a tendency to an elasto-plastic tendency was seen with an increase in the strain rate. All samples exhibited the same kind of behavior and a special focus is drawn in comparing the FCC nickel with BCC tungsten and iron where the persistence of the elastic, plastic response was addressed. However there is no absolute reason ...
Contributing Partner: UNT Libraries
Knowledge Based System and Decision Making Methodologies in Materials Selection for Aircraft Cabin Metallic Structures

Knowledge Based System and Decision Making Methodologies in Materials Selection for Aircraft Cabin Metallic Structures

Date: August 2016
Creator: Adhikari, Pashupati Raj
Description: Materials selection processes have been the most important aspects in product design and development. Knowledge-based system (KBS) and some of the methodologies used in the materials selection for the design of aircraft cabin metallic structures are discussed. Overall aircraft weight reduction means substantially less fuel consumption. Part of the solution to this problem is to find a way to reduce overall weight of metallic structures inside the cabin. Among various methodologies of materials selection using Multi Criterion Decision Making (MCDM) techniques, a few of them are demonstrated with examples and the results are compared with those obtained using Ashby's approach in materials selection. Pre-defined constraint values, mainly mechanical properties, are employed as relevant attributes in the process. Aluminum alloys with high strength-to-weight ratio have been second-to-none in most of the aircraft parts manufacturing. Magnesium alloys that are much lighter in weight as alternatives to the Al-alloys currently in use in the structures are tested using the methodologies and ranked results are compared. Each material attribute considered in the design are categorized as benefit and non-benefit attribute. Using Ashby's approach, material indices that are required to be maximized for an optimum performance are determined, and materials are ranked based on the ...
Contributing Partner: UNT Libraries
Laminar Natural Convection From Isothermal Vertical Cylinders

Laminar Natural Convection From Isothermal Vertical Cylinders

Date: August 2012
Creator: Day, Jerod
Description: Laminar natural convection heat transfer from the vertical surface of a cylinder is a classical subject, which has been studied extensively. Furthermore, this subject has generated some recent interest in the literature. In the present investigation, numerical experiments were performed to determine average Nusselt numbers for isothermal vertical cylinders (103 < RaL < 109, 0.5 < L/D <10, and Pr = 0.7) with and without an adiabatic top in a quiescent ambient environment which will allow for plume growth. Results were compared with commonly used correlations and new average Nusselt number correlations are presented. Furthermore, the limit for which the heat transfer results for a vertical flat plate may be used as an approximation for the heat transfer from a vertical cylinder was investigated.
Contributing Partner: UNT Libraries
Mist Characterization in Drilling 1018 Steel

Mist Characterization in Drilling 1018 Steel

Date: August 2012
Creator: Cole, Ian
Description: Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.
Contributing Partner: UNT Libraries
The Influence of Surface Roughness and Its Geometry on Dynamic Behavior of Water Droplets

The Influence of Surface Roughness and Its Geometry on Dynamic Behavior of Water Droplets

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Sadeghpour, Nima.
Description: In this study the author reports the effects of surface roughness on dynamic behavior of water droplets on different types of rough structures. First, the influence of roughness geometry on the Wenzel/ Cassie-Baxter transition of water droplets on one-tier (solid substrates with Si micropillars) surfaces is studied (Chapter 3). In order to address distinct wetting behaviors of the advancing and receding motions, the author investigates the Wenzel/ Cassie-Baxter transition of water droplets on one-tier surfaces over a wide range of contact line velocities and droplet volumes in both advancing and receding movements. The discussions are strengthened by experimental results. According to the author’s analysis, the advancing contact zone tends to follow the Cassie-Baxter behavior for a wider range of geometric ratios than the receding contact zone. Physical phenomena such as advancing contact line rolling mechanism and the pinning of the receding contact line are introduced to justify distinct transition points of the advancing and receding movements respectively. Based on the analysis provided in Chapter 3, the author experimentally investigates the contact line fluctuations and contact line friction coefficients of water droplets on smooth, one-tier, and two-tier (with carbon nanotubes (CNTs) grown on Si micropillars) surfaces in Chapters 4 and 5. ...
Contributing Partner: UNT Libraries
Mechanical Characterization of A2 and D2 Tool Steels By Nanoindentation

Mechanical Characterization of A2 and D2 Tool Steels By Nanoindentation

Date: May 2012
Creator: Okafor, Uzochukwu Chimezie
Description: Nanoindentation technique was used to investigate the surface properties of A2 and D2 tool steel subjected to different heat treatments. the mechanical characteristics of these two easily available tool steels were studied based on microstructural images obtained from SEM, the grain growth after heat treatment using X-ray diffraction method and nanoindentation technique. the investigation showed that a single nanoindentation result can explain how heat treatment influences reliability and failure in A2 and D2 tool steels. in this work, the causes and effects of these variations were studied to explain how they influence reliability and failure in A2 and D2 tool steel. Finally, a cube-corner indenter tip was used to determine the fracture toughness of silicon wafer. the emphasis of this research is on how nanoindentation technique is more extensive in material characterization.
Contributing Partner: UNT Libraries
Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry

Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry

Date: December 2004
Creator: Díaz, Jorge G.
Description: Commonly used amines in power industry, including morpholine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), and DMA (dimethylallylamine) were evaluated for their effect on AISI 1018 steel at 250oF. Samples were exposed to an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 hours. Morphology studies were carried using scanning electron microscope (SEM), phase analysis was done utilizing Fourier transform infrared spectroscopy (FTIR), and weight loss was performed to assess kinetics of oxidation. Control samples showed the highest metal dissolution rate. DBU showed the best performance in metal protection and SEM indicated the presence of a free-crack layer formed by fine particles in that set. FTIR showed that DBU apparently favored the formation of magnetite. It is believed that fine particles impede intrusion of aggressive ions into the metal surface by forming a barrier layer. FTIR demonstrated that DMA formed more oxyhydroxides, whereas morpholine presented magnetite to hematite transformation as early as 2 hours. SEM revealed that control and DMA produced acicular particles characteristic of oxyhydroxides while morpholine and DBU presented more equiaxed particles.
Contributing Partner: UNT Libraries
Effects of Thickness and Indenter Tip Geometry in Nanoindentation of Nickel Films

Effects of Thickness and Indenter Tip Geometry in Nanoindentation of Nickel Films

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Parakala, Padma
Description: Nanoindentation has become a widely used technique to measure the mechanical properties of materials. Due to its capability to deform materials in micro- and nano-scale, nanoindentation has found more applications in characterizing the deformation behavior and determining the mechanical properties of thin films and coatings. This research deals with the characterization of samples received from Center for Advanced Microstructures and Devices (CAMD) and Integran Technologies Inc., Toronto, Canada and the objective of this investigation was to utilize the experimental data obtained from nanoindentation to determine the deformation behavior, mechanical properties of thin films on substrates and bulk materials, and the effect of geometrically different indenters (Berkovich, cubecorner, and conical). X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis were performed on these materials to determine the crystal orientation, grain size of the material, and also to measure any substrate effects like pile-up or sin-in respectively. The results indicate that indentation size effect (ISE) strongly depends on shape of the indenter and less sensitive to penetration depth where as the hardness measurements depends on shape of indenter and depth of penetration. There is a negligible strain rate dependency of hardness at deeper depths ...
Contributing Partner: UNT Libraries
Effects of Rebar Temperature and Water to Cement Ratio on Rebar-Concrete Bond Strength of Concrete Containing Fly Ash

Effects of Rebar Temperature and Water to Cement Ratio on Rebar-Concrete Bond Strength of Concrete Containing Fly Ash

Date: May 2010
Creator: Pati, Ardeep Ranjan
Description: This research presents the results on an experimental investigation to identify the effects of rebar temperature, fly ash and water to cement ratio on concrete porosity in continuously reinforced concrete pavements (CRCP). Samples were cast and analyzed using pullout tests. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40 for both fly ash containing and non fly ash control samples. There was a reduction in the peak pullout load as the rebar surface temperature increased from 77o F to 150o F for the cast samples. A heated rebar experiment was performed simulating a rebar exposed to hot summer days and the rebar cooling curves were plotted for the rebar temperatures of 180o F - 120o F. Fourier transform infrared spectroscopy was performed to show the moisture content of cement samples at the rebar-concrete interface. Mercury intrusion porosimetry test results on one batch of samples were used for pore size distribution analysis. An in-depth analysis of the morphological characteristics of the rebar-concrete interface and the observation of pores ...
Contributing Partner: UNT Libraries
Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation.

Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Vemuri, Prasanna
Description: Cubic boron nitride (cBN) synthesis has gained lot of interest during the past decade as it offers outstanding physical and chemical properties like high hardness, high wear resistance, and chemical inertness. Despite of their excellent properties, every application of cBN is hindered by high compressive stresses and poor adhesion. The cost of equipment is also high in almost all the techniques used so far. This thesis deals with the synthesis of cubic phase of boron nitride on Si (100) wafers using electron beam evaporator, a low cost equipment that is capable of depositing films with reduced stresses. Using this process, need of ion beam employed in ion beam assisted processes can be eliminated thus reducing the surface damage and enhancing the film adhesion. Four sets of samples have been deposited by varying substrate temperature and the deposition time. scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) techniques have been used to determine the structure and composition of the films deposited. X-ray diffraction (XRD) was performed on one of the samples to determine the thickness of the film deposited for the given deposition rate. Several samples showed dendrites being formed as ...
Contributing Partner: UNT Libraries
FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

Date: August 2005
Creator: Pothapragada, Raja Mahesh
Description: Nanoindentation is a widely used technique to measure the mechanical properties of films with thickness ranging from nanometers to micrometers. A much better understanding of the contact mechanics is obtained mostly through finite element modeling. The experiments were modeled using the software package Nano SP1 that is based on COSMOSM™ (Structural Research & Analysis Corp, www.cosmosm.com), a finite element code. The fundamental material properties affecting pile-up are the ratio of the effective modulus to yield stress Eeff/σ and the work hardening behavior. Two separate cases of work hardening rates were considered; one with no work hardening rate and other with a linear work hardening rate. Specifically, it is observed that pile up is large only when hf/hmax is close to one and degree of work hardening rate is small. It should also be noted that when hf/hmax < 0.7 very little pile-up is observed no matter what the work-hardening behavior of the material. When pile-up occurs the contact area is greater than that predicted by the experimental methods and both the hardness and modulus are overestimated. In this report the amount by which these properties are overestimated are studied and got to be around 22% approx. Bluntness of the tip ...
Contributing Partner: UNT Libraries
Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3  Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3 Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Date: December 2008
Creator: Romanes, Maia Castillo
Description: Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.
Contributing Partner: UNT Libraries
Characterization of Iron Oxide Deposits Formed at Comanche Peak Steam Electric Station

Characterization of Iron Oxide Deposits Formed at Comanche Peak Steam Electric Station

Access: Use of this item is restricted to the UNT Community.
Date: May 2003
Creator: Namduri, Haritha
Description: The presence of deposits leading to corrosion of the steam generator (SG) systems is a major contributor to operation and maintenance cost of pressurized water reactor (PWR) plants. Formation and transport of corrosion products formed due to the presence of impurities, metallic oxides and cations in the secondary side of the SG units result in formation of deposits. This research deals with the characterization of deposit samples collected from the two SG units (unit 1 and unit 2) at Comanche Peak Steam Electric Station (CPSES). X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) techniques have been used for studying the compositional and structural properties of iron oxides formed in the secondary side of unit 1 and unit 2. Magnetite (Fe3O4) was found to be predominant in samples from unit 1 and maghemite (g-Fe2O3) was found to be the dominant phase in case of unit 2. An attempt has been made to customize FTIR technique for analyzing different iron oxide phases present in the deposits of PWR-SG systems.
Contributing Partner: UNT Libraries
Analyze and Rebuild an Apparatus to Gauge Evaporative Cooling Effectiveness of Micro-Porous Barriers.

Analyze and Rebuild an Apparatus to Gauge Evaporative Cooling Effectiveness of Micro-Porous Barriers.

Date: December 2008
Creator: Mohiti Asli, Ali
Description: The sample used for evaporative cooling system is Fabric defender 750 with Shelltite finish. From the experimental data and equations we have diffusion coefficient of 20.9 ± 3.71 x 10-6 m2/s for fabric with one layer with 17%-20% fluctuations from the theory, 27.8 ± 4.5 x 10-6 m2/s for fabric with two layers with 6%-14% fluctuations from the theory and 24.9 ± 4.1 x 10-6 m2/s for fabric with three layers with 13%-16% fluctuations from the theory. Since the thickness of the fabric increases so the mass transport rate decreases so the mass transport resistance should be increases. The intrinsic mass resistances of Fabri-1L, Fabri-2L and Fabri-3L are respectively 104 ± 10.2 s/m, 154 ± 23 s/m and 206 ± 26 s/m from the experiment.
Contributing Partner: UNT Libraries
Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone

Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Nar, Mangesh
Description: Mechanics of bone is widely studied and researched, mainly for the study of fracture. This has been done mostly on a macro scale. In this work hierarchical nature of bone has been explored to investigate bone mechanics in more detail. Flexural test were done to classify the bones according to their strength and deflection. Raman spectroscopy analysis was done to map the mineralization, collagen crosslinking changes across the thickness of the bone. Nanoindentation was done to map indentation hardness and indentation modulus across femoral cortex of the bone. The results indicate that the composition of the bone changes across the thickness of the femoral cortex. The hypothesis is confirmed as increase in mineralization, carbonate to phosphate ratio and collagen crosslinking shows the effect as increased indentation hardness and modulus and decreased deflection.
Contributing Partner: UNT Libraries
Analytical Model of Cold-formed Steel Framed Shear Wall with Steel Sheet and Wood-based Sheathing

Analytical Model of Cold-formed Steel Framed Shear Wall with Steel Sheet and Wood-based Sheathing

Date: May 2013
Creator: Yanagi, Noritsugu
Description: The cold-formed steel framed shear walls with steel sheets and wood-based sheathing are both code approved lateral force resisting system in light-framed construction. In the United States, the current design approach for cold-formed steel shear walls is capacity-based and developed from full-scale tests. The available design provisions provide nominal shear strength for only limited wall configurations. This research focused on the development of analytical models of cold-formed steel framed shear walls with steel sheet and wood-based sheathing to predict the nominal shear strength of the walls at their ultimate capacity level. Effective strip model was developed to predict the nominal shear strength of cold-formed steel framed steel sheet shear walls. The proposed design approach is based on a tension field action of the sheathing, shear capacity of sheathing-to-framing fastener connections, fastener spacing, wall aspect ratio, and material properties. A total of 142 full scale test data was used to verify the proposed design method and the supporting design equations. The proposed design approach shows consistent agreement with the test results and the AISI published nominal strength values. Simplified nominal strength model was developed to predict the nominal shear strength of cold-formed steel framed wood-based panel shear walls. The nominal shear ...
Contributing Partner: UNT Libraries
Long Term Property Prediction of Polyethylene Nanocomposites

Long Term Property Prediction of Polyethylene Nanocomposites

Date: December 2008
Creator: Shaito, Ali Al-Abed
Description: The amorphous fraction of semicrystalline polymers has long been thought to be a significant contributor to creep deformation. In polyethylene (PE) nanocomposites, the semicrystalline nature of the maleated PE compatibilizer leads to a limited ability to separate the role of the PE in the nanocomposite properties. This dissertation investigates blown films of linear low-density polyethylene (LLDPE) and its nanocomposites with montmorillonite-layered silicate (MLS). Addition of an amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was utilized to enhance the interaction between the PE and the MLS. The amorphous nature of the compatibilizer was used to differentiate the effect of the different components of the nanocomposites; namely the matrix, the filler, and the compatibilizer on the overall properties. Tensile test results of the nanocomposites indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE Thermal transitions were analyzed using differential scanning calorimetry (DSC) to determine if the observed improvement in mechanical properties is related to changes in crystallinity. The effect of dispersion of the MLS in the matrix was investigated by using a combination of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Mechanical measurements were correlated to ...
Contributing Partner: UNT Libraries
Bioinspired and biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance

Bioinspired and biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance

Access: Use of this item is restricted to the UNT Community.
Date: May 2016
Creator: Rizvi, Syed Hussain
Description: Hierarchical arrangement of biological composites such as nacre and bone containing high filler (ceramic) content results in high strength and toughness of the natural material. In this study we mimic the design of layered bone microstructure and fabricate an optimal multifunctional bio-nanocomposite having strength, toughness and corrosion resistance. Poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polymer was used as a substrate material with the reinforcement of LDH (Layered double hydroxide) as a nanofiller in different concentrations to achieve enhancement in mechanical properties as well as processing related thermostability. Corrosion resistance was increased by mimicking a layered structured which incorporated a tortuous diffusion path.
Contributing Partner: UNT Libraries