Mineral-filled polypropylene: Improvement of scratch resistance

Mineral-filled polypropylene: Improvement of scratch resistance

Access: Use of this item is restricted to the UNT Community.
Date: December 2001
Creator: Khatib, Jamal F.
Description: A potential alternative to acrylonitrile-butadiene-styrene (ABS) and polycarbonate+ABS (PC+ABS), pigmented mineral-filled polypropylene (PP) finds an opening in automotive interior components such as instrument panels, knee bolsters, consoles, etc. Because of the lack of surface aesthetics, pigmented mineral-filled PP is experiencing a limitation to its acceptance in many applications. This study focuses on exploring various mineral fillers and additives in polypropylene to provide a material with enhanced scratch resistance. Several physical properties including Rockwell and Shore D hardness are investigated, and it is determined that Filler W improves scratch resistance. It is also determined that Filler T-filled-PP has poor scratch resistance even with the addition of a lubricant.
Contributing Partner: UNT Libraries
Techniques Utilized in the Characterization of Existing Materials for Improved Material Development

Techniques Utilized in the Characterization of Existing Materials for Improved Material Development

Date: December 2001
Creator: Withaeger, Gary
Description: It has become increasingly important to remain on the cutting edge of technology for a company to remain competitive and survive in today's high-tech industries. To do this, a company needs various resources dedicated to this cause. One of these resources is the use of existing materials, as starting points, for which improved materials can be based. For this, a company must rely on the characterization of existing materials to bring that base technology into their company. Through this evaluation, the base materials properties can be obtained and a material with improved properties can be developed. There are many techniques that can be used in characterizing an existing material, but not every technique is required to obtain the desired goal. The techniques utilized depend upon the depth of identification required. This report summarizes several techniques utilized in the characterization of existing materials and provides some examples of evaluated products.
Contributing Partner: UNT Libraries
Mechanical behavior and performance of injection molded semi-crystalline polymers.

Mechanical behavior and performance of injection molded semi-crystalline polymers.

Access: Use of this item is restricted to the UNT Community.
Date: August 2003
Creator: Simoes, Ricardo J. F.
Description: I have used computer simulations to investigate the behavior of polymeric materials at the molecular level. The simulations were performed using the molecular dynamics method with Lennard-Jones potentials defining the interactions between particles in the system. Significant effort was put into the creation of realistic materials on the computer. For this purpose, an algorithm was developed based on the step-wise polymerization process. The resulting computer-generated materials (CGMs) exhibit several features of real materials, such as molecular weight distribution and presence of chain entanglements. The effect of the addition of a liquid crystalline (LC) phase to the flexible matrix was also studied. The concentration and distribution of the second phase (2P) were found to influence the mechanical and tribological properties of the CGMs. The size of the 2P agglomerates was found to have negligible influence on the properties within the studied range. Moreover, although the 2P reinforcement increases the modulus, it favors crack formation and propagation. Regions of high LC concentration exhibit high probability of becoming part of the crack propagation path. Simulations of the tensile deformation under a uniaxial force have shown that the molecular deformation mechanisms developing in the material depend on several variables, such as the magnitude of ...
Contributing Partner: UNT Libraries
Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy.

Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy.

Date: December 2003
Creator: Bilyeu, Bryan
Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage ...
Contributing Partner: UNT Libraries
Application of thermomechanical characterization techniques to bismuth telluride based thermoelectric materials

Application of thermomechanical characterization techniques to bismuth telluride based thermoelectric materials

Access: Use of this item is restricted to the UNT Community.
Date: August 2002
Creator: White, John B.
Description: The thermoelectric properties of bismuth telluride based thermoelectric (TE) materials are well-characterized, but comparatively little has been published on the thermomechanical properties. In this paper, dynamic mechanical analysis (DMA) and differential scanning calorimetry data for bismuth telluride based TE materials is presented. The TE materials' tan delta values, indicative of viscoelastic energy dissipation modes, approached that of glassy or crystalline polymers, were greater than ten times the tan delta of structural metals, and reflected the anisotropic nature of TE materials. DMA thermal scans showed changes in mechanical properties versus temperature with clear hysteresis effects. These results showed that the application of DMA techniques are useful for evaluation of thermophysical and thermomechanical properties of these TE materials.
Contributing Partner: UNT Libraries
Hypotheses for Scratch Behavior of Polymer Systems that Recover

Hypotheses for Scratch Behavior of Polymer Systems that Recover

Date: May 2002
Creator: Bujard, Bernard
Description: Scratch recovery is a desirable property of many polymer systems. The reason why some materials have demonstrated excellent scratch recovery while others do not has been a mystery. Explaining the scratch resistance based upon the hardness of a material or its crosslink density is incorrect. In this thesis, novel polymers were tested in an attempt to discover materials that show excellent scratch recovery - one of the most important parameters in determining the wear of a material. Several hypotheses were developed in an attempt to give an accurate picture of how the chemical structure of a polymer affects its scratch recovery. The results show that high scratch recovery is a complex phenomenon not solely dependent upon the presence of electronegative atoms such as fluorine.
Contributing Partner: UNT Libraries
Cure kinetics and processing parameters of neat and reinforced high performance epoxy resins : evaluation of techniques

Cure kinetics and processing parameters of neat and reinforced high performance epoxy resins : evaluation of techniques

Access: Use of this item is restricted to the UNT Community.
Date: December 1999
Creator: Bilyeu, Bryan
Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4’-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC). The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC and temperature-modulated DSC (TMDSC), thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram for rapid determination of processing parameters in the processing of prepregs. Copyright is held by the author, unless otherwise noted. All rights reserved. Files: Thesis.pdf Special Conditions
Contributing Partner: UNT Libraries
Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Date: May 2008
Creator: Chonkaew, Wunpen
Description: A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and ...
Contributing Partner: UNT Libraries