Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

Date: December 2003
Creator: Wang, Changjie
Description: The polymer gels especially hydrogels have a very special structure and useful features such as unusual volume phase transition, compatibility with biological systems, and sensitivity to environmental stimuli (temperature, pH value, electric field, light and more), which lead to many potential applications in physical and biochemical fields. This research includes: (1) the theoretical and experimental studies of polymer gels on swelling kinetics, spinodal decomposition, and solution convection in gel matrix; (2) applications of polymer gels in wound dressing, tissue-simulating optical phantom and gel display. The kinetics of gel swelling has been theoretically analyzed by considering coupled motions of both solvent and polymer network. Analytical solutions of the solvent and the network movement are derived from collective diffusion equations for a long cylindrical and a large disk gel. Kinetics of spinodal decomposition of N-isopropylacrylamide (NIPA) polymer gel is investigated using turbidity and ultrasonic techniques. By probing movement of domains, a possible time-dependent gel structure in the spinodal decomposition region is presented. Theoretical studies of solution convection in gel matrix have been done and more analysis on dimensionless parameters is provided. To enhance the drug uptake and release capacity of silicone rubber (SR), NIPA hydrogel particles have been incorporated into a SR ...
Contributing Partner: UNT Libraries
Surface Segregation in Multi-component Systems: Modeling Binary Ni-Al Alloys Using the BFS Method

Surface Segregation in Multi-component Systems: Modeling Binary Ni-Al Alloys Using the BFS Method

Date: August 2004
Creator: Kasmi, Azeddine
Description: Although the study of surface segregation has a great technological importance, the work done in the field was for a long time largely restricted to experimental studies and the theoretical work was neglected. However, recent improvements in both first principles and semi-empirical methods are opening a new era for surface scientists. A method developed by Bozzolo, Ferrante, and Smith (BFS) is particularly suitable for complex systems and several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces and the formation of surface alloys. In the following work I introduce the BFS method and apply it to model the Ni-Al alloy through a Monte-Carlo simulation. A comparison between my results and those results published by the group mentioned above was my goal. This thesis also includes a detailed explanation of the application of the BFS method to surfaces of multi-component metallic systems, beyond binary alloys.
Contributing Partner: UNT Libraries
Random growth of interfaces: Statistical analysis of single columns and detection of critical events.

Random growth of interfaces: Statistical analysis of single columns and detection of critical events.

Access: Use of this item is restricted to the UNT Community.
Date: August 2004
Creator: Failla, Roberto
Description: The dynamics of growth and formation of surfaces and interfaces is becoming very important for the understanding of the origin and the behavior of a wide range of natural and industrial dynamical processes. The first part of the paper is focused on the interesting field of the random growth of surfaces and interfaces, which finds application in physics, geology, biology, economics, and engineering among others. In this part it is studied the random growth of surfaces from within the perspective of a single column, namely, the fluctuation of the column height around the mean value, which is depicted as being subordinated to a standard fluctuation-dissipation process with friction g. It is argued that the main properties of Kardar-Parisi-Zhang theory are derived by identifying the distribution of return times to y(0) = 0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of the theoretical prediction with the numerical treatment of the model of ballistic deposition is remarkably good, in spite of the finite size effects affecting this model. The second part of the paper deals with the efficiency of the diffusion entropy analysis (DEA) when applied to the studies of stromatolites. In this case ...
Contributing Partner: UNT Libraries
Polymer hydrogel nanoparticles and their networks

Polymer hydrogel nanoparticles and their networks

Date: August 2002
Creator: Lu, Xihua
Description: The thermally responsive hydroxypropyl cellulose (HPC) hydrogel nanoparticles have been synthesized and characterized. The HPC particles were obtained by chemically crosslinking collapsed HPC polymer chains in water-surfactant (dodecyltrimethylammonium bromide) dispersion above the lower critical solution temperature (LCST) of the HPC. The size distributions of microgel particles, measured by dynamic light scattering, have been correlated with synthesis conditions including surfactant concentration, polymer concentration, and reaction temperature. The swelling and phase transition properties of resultant HPC microgels have been analyzed using both static and dynamic light scattering techniques. By first making gel nanoparticles and then covalently bonding them together, we have engineered a new class of gels with two levels of structural hierarchy: the primary network is crosslinked polymer chains in each individual particle, while the secondary network is a system of crosslinked nanoparticles. The covalent bonding contributes to the structural stability of the nanostructured gels, while self-assembly provides them with crystal structures that diffract light, resulting in colors. By using N-isopropylacrylamide copolymer hydrogel nanoparticles, we have synthesized nanoparticle networks that display a striking iridescence like precious opal but are soft and flexible like gelatin. This is in contrast to previous colored hydrogels, which were created either by adding dyes or fluorescent, ...
Contributing Partner: UNT Libraries
Fluorine Adsorption and Diffusion in Polycrystalline Silica

Fluorine Adsorption and Diffusion in Polycrystalline Silica

Date: December 1998
Creator: Jin, Jian-Yue
Description: The measurement of fluorine penetration into archeological flint artifacts using Nuclear Reaction Analysis (NRA) has been reported to be a potential dating method. However, the mechanism of how fluorine is incorporated into the flint surface, and finally transported into the bulk is not well understood. This research focuses on the study of the fluorine uptake phenomenon of flint mineral in aqueous fluoride solutions. Both theoretical and experimental approaches have been carried out. In a theoretical approach, a pipe-diffusion model was used to simulate the complicated fluorine transportation problem in flint, in which several diffusion mechanisms may be involved.
Contributing Partner: UNT Libraries
Synthesis and Study of Engineered Heterogenous Polymer Gels

Synthesis and Study of Engineered Heterogenous Polymer Gels

Date: August 1998
Creator: Chen, Yuanye
Description: This dissertation studies physical properties and technological applications of engineered heterogenous polymer gels. Such gels are synthesized based on modulation of gel chemical nature in space. The shape memory gels have been developed in this study by using the modulated gel technology. At room temperature, they form a straight line. As the temperature is increased, they spontaneously bend or curl into a predetermined shape such as a letter of the alphabet, a numerical number, a spiral, a square, or a fish. The shape changes are reversible. The heterogenous structures have been also obtained on the gel surface. The central idea is to cover a dehydrated gel surface with a patterned mask, then to sputter-deposit a gold film onto it. After removing the mask, a gold pattern is left on the gel surface. Periodical surface array can serve as gratings to diffract light. The grating constant can be continuously changed by the external environmental stimuli such as temperature and electric field. Several applications of gels with periodic surface arrays as sensors for measuring gel swelling ratio, internal strain under an uniaxial stress, and shear modulus have been demonstrated. The porous NIPA gels have been synthesized by suspension technique. Microstructures of newly ...
Contributing Partner: UNT Libraries
Precision Atomic Spectroscopy with an Integrated Electro- Optic Modulator and DBR Diode Laser at 1083nm

Precision Atomic Spectroscopy with an Integrated Electro- Optic Modulator and DBR Diode Laser at 1083nm

Access: Use of this item is restricted to the UNT Community.
Date: December 1999
Creator: Castillega, Jaime
Description: We have explored the use of recently developed high speed integrated electro optic modulators and DBR diode lasers as a tool for precision laser studies of atoms. In particular, we have developed a technique using a high speed modulator as a key element and applied it to the study of the fine structure of the 23P state of atomic helium. This state has been of long standing interest in atomic physics and its study has been the aim of several recent experiments using various precision techniques. We present our method and results, which will describe a new method for determining the fine structure constant, and lead to a precision test of atomic theory.
Contributing Partner: UNT Libraries
Non-Poissonian statistics, aging and "blinking'" quantum dots.

Non-Poissonian statistics, aging and "blinking'" quantum dots.

Date: August 2004
Creator: Aquino, Gerardo
Description: This dissertation addresses the delicate problem of aging in complex systems characterized by non-Poissonian statistics. With reference to a generic two-states system interacting with a bath it is shown that to properly describe the evolution of such a system within the formalism of the continuous time random walk (CTRW), it has to be taken into account that, if the system is prepared at time t=0 and the observation of the system starts at a later time ta>0, the distribution of the first sojourn times in each of the two states depends on ta, the age of the system. It is shown that this aging property in the fractional derivative formalism forces to introduce a fractional index depending on time. It is shown also that, when a stationary condition exists, the Onsager regression principle is fulfilled only if the system is aged and consequently if an infinitely aged distribution for the first sojourn times is adopted in the CTRW formalism used to describe the system itself. This dissertation, as final result, shows how to extend to the non-Poisson case the Kubo Anderson (KA) lineshape theory, so as to turn it into a theoretical tool adequate to describe the time evolution of ...
Contributing Partner: UNT Libraries
Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Date: May 2000
Creator: Guo, Baonian
Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection ...
Contributing Partner: UNT Libraries
Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions

Ion-Induced Damage In Si: A Fundamental Study of Basic Mechanisms over a Wide Range of Implantation Conditions

Date: May 2006
Creator: Roth, Elaine Grannan
Description: A new understanding of the damage formation mechanisms in Si is developed and investigated over an extended range of ion energy, dose, and irradiation temperature. A simple model for dealing with ion-induced damage is proposed, which is shown to be applicable over the range of implantation conditions. In particular the concept of defect "excesses" will be discussed. An excess exists in the lattice when there is a local surplus of one particular type of defect, such as an interstitial, over its complimentary defect (i.e., a vacancy). Mechanisms for producing such excesses by implantation will be discussed. The basis of this model specifies that accumulation of stable lattice damage during implantation depends upon the excess defects and not the total number of defects. The excess defect model is validated by fundamental damage studies involving ion implantation over a range of conditions. Confirmation of the model is provided by comparing damage profiles after implantation with computer simulation results. It will be shown that transport of ions in matter (TRIM) can be used effectively to model the ion-induced damage profile, i.e. excess defect distributions, by a simple subtraction process in which the spatially correlated defects are removed, thereby simulating recombination. Classic defect studies ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST