A Computational Study on 18+δ Organometallics

A Computational Study on 18+δ Organometallics

Date: May 2002
Creator: Yu, Liwen
Description: The B3LYP density functional has been used to calculate properties of organometallic complexes of Co(CO)3 and ReBr(CO)3, with the chelating ligand 2,3-bisphosphinomaleic anhydride, in 19- and 18-electron forms. The SBKJC-21G effective core potential and associated basis set was used for metals (Co/Re) and the 6-31G* basis set was used for all other elements. The differences of bond angles, bond distances, natural atomic charges and IR vibrational frequencies were compared with the available experimental parameters. The differences between the 19- and 18-electron systems have been analyzed. The results reveal that the 19th electron is mostly distributed over the ligand of 2,3-bisphosphinomaleic anhydride, although partially localized onto the metal fragment in 1 and 2*. Two different methods, IR-frequencies and natural atomic charges, were used to determine the value of δ. Present computed values of δ are compared with available experimental values, and predictions are made for unknown complexes.
Contributing Partner: UNT Libraries
Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Date: May 2013
Creator: Ayling, Sean A.
Description: The kinetics of the reaction of atomic sulfur with acetylene (S (3P) + C2H2) were investigated experimentally via the flash photolysis resonance fluorescence method, and the theoretical potential energy surface for the reaction CN + SO was modeled via the density functional and configuration interaction computational methods. Sulfur is of interest in modern chemistry due to its relevance in combustion and atmospheric chemistry, in the Claus process, in soot and diamond-film formation and in astrochemistry. Experimental conditions ranged from 295 – 1015 K and 10 – 400 Torr of argon. Pressure-dependence was shown at all experimental temperatures. The room temperature high-pressure limit second order rate constant was (2.10 ± 0.08) × 10-13 cm3 molecule-1 s-1. The Arrhenius plot of the high-pressure limit rate constants gave an Ea of (11.34 ± 0.03) kJ mol-1 and a pre-exponential factor of (2.14 ± 0.19) × 10-11 cm3 molecule-1 s-1. S (3P) + C2H2 is likely an adduct forming reaction due to pressure-dependence (also supported by a statistical mechanics analysis) which involves intersystem crossing. The potential energy surface for CN + SO was calculated at the B3LYP/6-311G(d) level and refined at the QCISD/6-311G(d) level. The PES was compared to that of the analogous reaction ...
Contributing Partner: UNT Libraries
Kinetic Investigation of the Gas Phase Atomic Sulfur and Nitrogen Dioxide Reaction

Kinetic Investigation of the Gas Phase Atomic Sulfur and Nitrogen Dioxide Reaction

Date: May 2011
Creator: Thompson, Kristopher Michael
Description: The kinetics of the reaction of atomic sulfur and nitrogen dioxide have been investigated over the temperature range 298 to 650 K and pressures from 14 - 405 mbar using the laser flash photolysis - resonance fluorescence technique. The overall bimolecular rate expression k (T) = (1.88 ± 0.49) x10-11 exp-(4.14 ± 0.10 kJ mol-1)/RT cm3 molecule-1 s-1 is derived. Ab initio calculations were performed at the CCSD(T)/CBS level of theory and a potential energy surface has been derived. RRKM theory calculations were performed on the system. It is found that an initially formed SNO2 is vibrationally excited and the rate of collisional stabilization is slower than the rate of dissociation to SO + NO products by a factor of 100 - 1000, under the experimental conditions.
Contributing Partner: UNT Libraries
Investigation of the Pressure Dependence of SO3    Formation

Investigation of the Pressure Dependence of SO3 Formation

Date: December 2003
Creator: Naidoo, Jacinth
Description: The kinetics of the pressure dependent O + SO2 + Ar reaction have been investigated using laser photolysis resonance fluorescence at temperatures of 289 K, 399 K, 581 K, 699 K, 842 K and 1040 K and at pressures from 30-665 torr. Falloff was observed for the first time in the pressure dependence. Application of Lindemann theory yielded an Arrhenius expression of k(T) = 3.3 x 10-32exp(-992/T) cm6 molecule-1 s-1 for the low pressure limit and k(T) = 8.47 x 10-14exp(-468/T) cm3 molecule-1 s-1 for the high pressure limit at temperatures between 289 and 842 K. The reaction is unusual as it possesses a positive activation energy at low temperature, yet at higher temperatures the activation energy is negative, illustrating a reaction barrier.
Contributing Partner: UNT Libraries
Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase.

Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase.

Date: August 2009
Creator: Alecu, Ionut M.
Description: The gas phase reactions of atomic chlorine with hydrogen sulfide, ammonia, benzene, and ethylene are investigated using the laser flash photolysis / resonance fluorescence experimental technique. In addition, the kinetics of the reverse processes for the latter two elementary reactions are also studied experimentally. The absolute rate constants for these processes are measured over a wide range of conditions, and the results offer new accurate information about the reactivity and thermochemistry of these systems. The temperature dependences of these reactions are interpreted via the Arrhenius equation, which yields significantly negative activation energies for the reaction of the chlorine atom and hydrogen sulfide as well as for that between the phenyl radical and hydrogen chloride. Positive activation energies which are smaller than the overall endothermicity are measured for the reactions between atomic chlorine with ammonia and ethylene, which suggests that the reverse processes for these reactions also possess negative activation energies. The enthalpies of formation of the phenyl and β-chlorovinyl are assessed via the third-law method. The stability and reactivity of each reaction system is further rationalized based on potential energy surfaces, computed with high-level ab initio quantum mechanical methods and refined through the inclusion of effects which arise from the ...
Contributing Partner: UNT Libraries
Synthesis and properties of novel cage-functionalized crown ethers and cryptands.

Synthesis and properties of novel cage-functionalized crown ethers and cryptands.

Date: August 2001
Creator: Hazlewood, Anna
Description: A novel cryptand was synthesized which contained a 3,5-disubstituted-4- oxahexacyclo[5.4.1.02,6.03,10.05,9.08,11] dodecane "cage" moiety. In alkali metal picrate extraction experiments the cryptand exhibited high avidity towards Rb+ and Cs+, when compared with the corresponding model compound. A computational study of a series of cage-functionalized cryptands and their alkali metal-complexes was performed. The X-ray crystal structure of a K+-complexed bis-cage-annulated 20-crown-6 was obtained. The associated picrate anion was found to be intimately involved in stabilization of the host-guest complex. The interaction energy between the host-guest complex and picrate anion has been calculated, and the energy thereby obtained has been corrected for basis set superposition error.
Contributing Partner: UNT Libraries
Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions

Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions

Access: Use of this item is restricted to the UNT Community.
Date: December 2002
Creator: Peebles, Lynda Renee
Description: The thermochemistry of several species, and the kinetics of various H atom radical reactions relevant to atmospheric and combustion chemistry were investigated using ab initio theoretical techniques and the flash photolysis / resonance fluorescence technique. Using ab initio quantum mechanical calculations up to the G3 level of theory, the C-H bond strengths of several alkanes were calculated. The bond strengths were calculated using two working reactions. From the results, it is apparent that the bond strengths decrease as methyl groups are added to the central carbon. The results are in good agreement with recent experimental halogenation kinetic studies. Hydrogen bond strengths with sulfur and oxygen were studied via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results for the bond dissociation energies (ground state at 0 K, units: kJ mol-1) are: S-H = 349.9, S-D = 354.7, HS-H = 376.2, DS-D = 383.4, and HO-H = 492.6. These data compare well with experimental literature. The rate constants for the isotopic reactions of H + H2S, D + H2S, H + D2S, and D + D2S are studied at the QCISD(T)/6-311+G(3df,2p) level of theory. The contributions of the exchange reaction versus abstraction are examined through transition state ...
Contributing Partner: UNT Libraries
Computational studies on Group 14 elements (C, Si and Ge) in organometallic and biological compounds.

Computational studies on Group 14 elements (C, Si and Ge) in organometallic and biological compounds.

Date: May 2007
Creator: Yu, Liwen
Description: A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CºO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed ...
Contributing Partner: UNT Libraries
Study of Interactions Between Diffusion Barrier Layers and Low-k Dielectric Materials for Copper/Low-k Integration

Study of Interactions Between Diffusion Barrier Layers and Low-k Dielectric Materials for Copper/Low-k Integration

Date: December 2003
Creator: Tong, Jinhong
Description: The shift to the Cu/low-k interconnect scheme requires the development of diffusion barrier/adhesion promoter materials that provide excellent performance in preventing the diffusion and intermixing of Cu into the adjacent dielectrics. The integration of Cu with low-k materials may decrease RC delays in signal propagation but pose additional problems because such materials are often porous and contain significant amounts of carbon. Therefore barrier metal diffusion into the dielectric and the formation of interfacial carbides and oxides are of significant concern. The objective of the present research is to investigate the fundamental surface interactions between diffusion barriers and various low-k dielectric materials. Two major diffusion barriers¾ tatalum (Ta) and titanium nitride (TiN) are prepared by DC magnetron sputtering and metal-organic chemical vapor deposition (MOCVD), respectively. Surface analytical techniques, such as X-ray photoelectronic spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are employed. Ta sputter-deposited onto a Si-O-C low dielectric constant substrate forms a reaction layer composed of Ta oxide and TaC. The composition of the reaction layer varies with deposition rate (1 Å-min-1 vs. 2 Å-sec-1), but in both cases, the thickness of the TaC layer is found to be at least 30 Å on the basis of ...
Contributing Partner: UNT Libraries
Synthesis and host-guest interaction of cage-annulated podands, crown ethers, cryptands, cavitands and non-cage-annulated cryptands.

Synthesis and host-guest interaction of cage-annulated podands, crown ethers, cryptands, cavitands and non-cage-annulated cryptands.

Date: May 2003
Creator: Chen, Zhibing
Description: Symmetrical cage-annulated podands were synthesized via highly efficient synthetic strategies. Mechanisms to account for the key reaction steps in the syntheses are proposed; the proposed mechanisms receive support from the intermediates that have been isolated and characterized. An unusual complexation-promoted elimination reaction was studied, and a mechanism is proposed to account for the course of this reaction. This unusual elimination may generalized to other rigid systems and thus may extend our understanding of the role played by the host molecules in "cation-capture, anion-activation" via complexation with guest molecules. Thus, host-guest interaction serves not only to activate the anion but also may activate the leaving groups that participate in the complexation. Complexation-promoted elimination provides a convenient method to desymmetrize the cage while avoiding protection/deprotection steps. In addition, it offers a convenient method to prepare a chiral cage spacer by introducing 10 chiral centers into the host system in a single synthetic step. Cage-annulated monocyclic hosts that contain a cage-butylenoxy spacer were synthesized. Comparison of their metal ion complexation behavior as revealed by the results of electrospray ionization mass spectrometry (ESI-MS), alkali metal picrate extraction, and pseudohydroxide extraction with those displayed by the corresponding hosts that contain cage-ethylenoxy or cage-propylenoxy spacers reveals ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST