Effects of Minimum Quantity Lubrication (Mql) on Tool Life in Drilling Aisi 1018 Steel

Effects of Minimum Quantity Lubrication (Mql) on Tool Life in Drilling Aisi 1018 Steel

Date: August 2012
Creator: Maru, Tejas
Description: It has been reported that minimum quantity lubrication (MQL) provides better tool life compared to flood cooling under some drilling conditions. In this study, I evaluate the performance of uncoated HSS twist drill when machining AISI 1018 steel using a newly developed lubricant designed for MQL (EQO-Kut 718 by QualiChem Inc.). A randomized factorial design was used in the experiment. The results show that a tool life of 1110 holes with a corresponding flank wear of 0.058 mm was realized.
Contributing Partner: UNT Libraries
Mist Characterization in Drilling 1018 Steel

Mist Characterization in Drilling 1018 Steel

Date: August 2012
Creator: Cole, Ian
Description: Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.
Contributing Partner: UNT Libraries
Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication

Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication

Date: August 2013
Creator: Shaikh, Vasim
Description: Flood cooling is primarily used to cool and lubricate the cutting tool and workpiece interface during a machining process. But the adverse health effects caused by the use of flood coolants are drawing manufacturers' attention to develop methods for controlling occupational exposure to cutting fluids. Microlubrication serves as an alternative to flood cooling by reducing the volume of cutting fluid used in the machining process. Microlubrication minimizes the exposure of metal working fluids to the machining operators leading to an economical, safer and healthy workplace environment. In this dissertation, a vegetable based lubricant is used to conduct mist, microstructure and wear analyses during end milling AISI 1018 steel using microlubrication. A two-flute solid carbide cutting tool was used with varying cutting speed and feed rate levels with a constant depth of cut. A full factorial experiment with Multivariate Analysis of Variance (MANOVA) was conducted and regression models were generated along with parameter optimization for the flank wear, aerosol mass concentration and the aerosol particle size. MANOVA indicated that the speed and feed variables main effects are significant, but the interaction of (speed*feed) was not significant at 95% confidence level. The model was able to predict 69.44%, 68.06% and 42.90% of ...
Contributing Partner: UNT Libraries