Comparison of IKONOS Derived Vegetation Index and LiDAR Derived Canopy Height Model for Grassland Management.

Comparison of IKONOS Derived Vegetation Index and LiDAR Derived Canopy Height Model for Grassland Management.

Date: December 2009
Creator: Parker, Gary
Description: Forest encroachment is understood to be the main reason for prairie grassland decline across the United States. In Texas and Oklahoma, juniper has been highlighted as particularly opportunistic. This study assesses the usefulness of three remote sensing techniques to aid in locating the areas of juniper encroachment for the LBJ Grasslands in Decatur, Texas. An object based classification was performed in eCognition and final accuracy assessments placed the overall accuracy at 94%, a significant improvement over traditional pixel based methods. Image biomass was estimated using normalized difference vegetation index (NDVI) for 1 meter resolution IKONOS winter images. A high correlation between the sum of NDVI for tree objects and field tree biomass was determined where R = 0.72, suggesting NDVI sum of a tree area is plausible. However, issues with NDVI saturation and regression produced unrealistically high biomass estimates for large NDVI. Canopy height model (CHM) derived from 3-5m LiDAR data did not perform as well. LiDAR typically used for digital elevation model (DEM) production was acquired for the CHM and produced correlations of R = 0.26. This suggests an inability for this particular dataset to identify juniper trees. When points that registered a tree height where correlated with field ...
Contributing Partner: UNT Libraries