Magnetotransport Properties of  AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx

Magnetotransport Properties of AlxIn1-xAsySb1-y/GaSb and Optical Properties of GaAs1-xSbx

Date: May 2003
Creator: Lukic- Zrnic, Reiko
Description: Multilayer structures of AlxIn1-xAsySb1-y/GaSb (0.37 £ x £ 0.43, 0.50 £ y £ 0.52), grown by molecular beam epitaxy on GaSb (100) substrates were characterized using variable temperature Hall and Shubnikov-de Haas techniques. For nominally undoped structures both p and n-type conductivity was observed. The mobilities obtained were lower than those predicted by an interpolation method using the binary alloys; therefore, a detailed analysis of mobility versus temperature data was performed to extract the appropriate scattering mechanisms. For p-type samples, the dominant mechanism was ionized impurity scattering at low temperatures and polar optical phonon scattering at higher temperatures. For n-type samples, ionized impurity scattering was predominant at low temperatures, and electron-hole scattering dominated for both the intermediate and high temperature range. Analyses of the Shubnikov-de Haas data indicate the presence of 2-D carrier confinement consistent with energy subbands in GaAszSb1-z potential wells. Epilayers of GaAs1-xSbx (0.19<x<0.71), grown by MBE on semi-insulating GaAs with various substrate orientations, were studied by absorption measurements over the temperature range of 4-300 K. The various substrate orientations were chosen to induce different degrees of spontaneous atomic ordering. The temperature dependence of the energy gap (Eg) for each of these samples was modeled using three semi-empirical ...
Contributing Partner: UNT Libraries
The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

Date: May 2002
Creator: Wadhawan, Atul
Description: The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (I-V) curves showed non-Fowler-Nordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE I-V curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turn-on voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an ...
Contributing Partner: UNT Libraries
A Novel Process for GeSi Thin Film Synthesis

A Novel Process for GeSi Thin Film Synthesis

Date: December 2007
Creator: Hossain, Khalid
Description: A unique process of fabricating a strained layer GexSi1-x on insulator is demonstrated. Such strained heterostructures are useful in the fabrication of high-mobility transistors. This technique incorporates well-established silicon processing technology e.g., ion implantation and thermal oxidation. A dilute GeSi layer is initially formed by implanting Ge+ into a silicon-on-insulator (SOI) substrate. Thermal oxidation segregates the Ge at the growing oxide interface to form a distinct GexSi1-x thin-film with a composition that can be tailored by controlling the oxidation parameters (e.g. temperature and oxidation ambient). In addition, the film thickness can be controlled by implantation fluence, which is important since the film forms pseudomorphically below 2×1016 Ge/cm2. Continued oxidation consumes the underlying Si leaving the strained GeSi film encapsulated by the two oxide layers, i.e. the top thermal oxide and the buried oxide. Removal of the thermal oxide by a dilute HF etch completes the process. Strain relaxation can be achieved by either of two methods. One involves vacancy injection by ion implantation to introduce sufficient open-volume within the film to compensate for the compressive strain. The other depends upon the formation of GeO2. If Ge is oxidized in the absence of Si, it evaporates as GeO(g) resulting in spontaneous ...
Contributing Partner: UNT Libraries
Neutron Transmutation and Hydrogenation Study of Hg₁₋xCdxTe

Neutron Transmutation and Hydrogenation Study of Hg₁₋xCdxTe

Date: December 2007
Creator: Zhao, Wei
Description: Anomalous Hall behavior of HgCdTe refers to a "double cross-over" feature of the Hall coefficient in p-type material, or a peak in the Hall mobility or Hall coefficient in n-type material. A magnetoconductivity tensor approach was utilized to identify presence of two electrons contributing to the conduction as well as transport properties of each electron in the material. The two electron model for the mobility shows that the anomalous Hall behavior results from the competition of two electrons, one in the energy gap graded region near the CdZnTe/HgCdTe interface with large band gap and the other in the bulk of the LPE film with narrow band gap. Hg0.78Cd0.22Te samples grown by LPE on CdZnTe(111B)-oriented substrates were exposed to various doses of thermal neutrons (~1.7 x 1016 - 1.25 x 1017 /cm2) and subsequently annealed at ~220oC for ~24h in Hg saturated vapor to recover damage and reduce the presence of Hg vacancies. Extensive Magnetotransport measurements were performed on these samples. SIMS profile for impurities produced by neutron irradiation was also obtained. The purpose for this study is to investigate the influence of neutron irradiation on this material as a basis for further study on HgCdTe74Se. The result shows that total ...
Contributing Partner: UNT Libraries
Metal Oxide Reactions in Complex Environments: High Electric Fields and Pressures above Ultrahigh Vacuum

Metal Oxide Reactions in Complex Environments: High Electric Fields and Pressures above Ultrahigh Vacuum

Date: August 2005
Creator: Qin, Feili
Description: Metal oxide reactions at metal oxide surfaces or at metal-metal oxide interfaces are of exceptional significance in areas such as catalysis, micro- and nanoelectronics, chemical sensors, and catalysis. Such reactions are frequently complicated by the presence of high electric fields and/or H2O-containing environments. The focus of this research was to understand (1) the iron oxide growth mechanism on Fe(111) at 300 K and 500 K together with the effect of high electric fields on these iron oxide films, and (2) the growth of alumina films on two faces of Ni3Al single crystal and the interaction of the resulting films with water vapor under non-UHV conditions. These studies were conducted with AES, LEED, and STM. XPS was also employed in the second study. Oxidation of Fe(111) at 300 K resulted in the formation of Fe2O3 and Fe3O4. The substrate is uniformly covered with an oxide film with relatively small oxide islands, i.e. 5-15 nm in width. At 500 K, Fe3O4 is the predominant oxide phase formed, and the growth of oxide is not uniform, but occurs as large islands (100 - 300 nm in width) interspersed with patches of uncovered substrate. Under the stress of STM induced high electric fields, dielectric ...
Contributing Partner: UNT Libraries
MBE Growth and Instrumentation

MBE Growth and Instrumentation

Date: May 2006
Creator: Tarigopula, Sriteja
Description: This thesis mainly aims at application of principles of engineering technology in the field of molecular beam epitaxy (MBE). MBE is a versatile technique for growing epitaxial thin films of semiconductors and metals by impinging molecular beams of atoms onto a heated substrate under ultra-high vacuum (UHV) conditions. Here, a LabVIEW® (laboratory virtual instrument engineering workbench) software (National Instruments Corp., http://www.ni.com/legal/termsofuse/unitedstates/usH) program is developed that would form the basis of a real-time control system that would transform MBE into a true-production technology. Growth conditions can be monitored in real-time with the help of reflection high energy electron diffraction (RHEED) technique. The period of one RHEED oscillation corresponds exactly to the growth of one monolayer of atoms of the semiconductor material. The PCI-1409 frame grabber card supplied by National Instruments is used in conjunction with the LabVIEW software to capture the RHEED images and capture the intensity of RHEED oscillations. The intensity values are written to a text file and plotted in the form of a graph. A fast Fourier transform of these oscillations gives the growth rate of the epi-wafer being grown. All the data being captured by the LabVIEW program can be saved to file forming a growth pedigree ...
Contributing Partner: UNT Libraries