### An Exploration of the Word2vec Algorithm: Creating a Vector Representation of a Language Vocabulary that Encodes Meaning and Usage Patterns in the Vector Space Structure

**Date:**May 2016

**Creator:**Le, Thu Anh

**Description:**This thesis is an exloration and exposition of a highly efficient shallow neural network algorithm called word2vec, which was developed by T. Mikolov et al. in order to create vector representations of a language vocabulary such that information about the meaning and usage of the vocabulary words is encoded in the vector space structure. Chapter 1 introduces natural language processing, vector representations of language vocabularies, and the word2vec algorithm. Chapter 2 reviews the basic mathematical theory of deterministic convex optimization. Chapter 3 provides background on some concepts from computer science that are used in the word2vec algorithm: Huffman trees, neural networks, and binary cross-entropy. Chapter 4 provides a detailed discussion of the word2vec algorithm itself and includes a discussion of continuous bag of words, skip-gram, hierarchical softmax, and negative sampling. Finally, Chapter 5 explores some applications of vector representations: word categorization, analogy completion, and language translation assistance.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849728/

### Real Analyticity of Hausdorff Dimension of Disconnected Julia Sets of Cubic Parabolic Polynomials

**Date:**August 2012

**Creator:**Akter, Hasina

**Description:**Consider a family of cubic parabolic polynomials given by for non-zero complex parameters such that for each the polynomial is a parabolic polynomial, that is, the polynomial has a parabolic fixed point and the Julia set of , denoted by , does not contain any critical points of . We also assumed that for each , one finite critical point of the polynomial escapes to the super-attracting fixed point infinity. So, the Julia sets are disconnected. The concern about the family is that the members of this family are generally not even bi-Lipschitz conjugate on their Julia sets. We have proved that the parameter set is open and contains a deleted neighborhood of the origin 0. Our main result is that the Hausdorff dimension function defined by is real analytic. To prove this we have constructed a holomorphic family of holomorphic parabolic graph directed Markov systems whose limit sets coincide with the Julia sets of polynomials up to a countable set, and hence have the same Hausdorff dimension. Then we associate to this holomorphic family of holomorphic parabolic graph directed Markov systems an analytic family, call it , of conformal graph directed Markov systems with infinite number of edges in ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271768/

### Kleinian Groups in Hilbert Spaces

**Date:**August 2012

**Creator:**Das, Tushar

**Description:**The theory of discrete groups acting on finite dimensional Euclidean open balls by hyperbolic isometries was borne around the end of 19th century within the works of Fuchs, Klein and Poincaré. We develop the theory of discrete groups acting by hyperbolic isometries on the open unit ball of an infinite dimensional separable Hilbert space. We present our investigations on the geometry of limit sets at the sphere at infinity with an attempt to highlight the differences between the finite and infinite dimensional theories. We discuss the existence of fixed points of isometries and the classification of isometries. Various notions of discreteness that were equivalent in finite dimensions, no longer turn out to be in our setting. In this regard, the robust notion of strong discreteness is introduced and we study limit sets for properly discontinuous actions. We go on to prove a generalization of the Bishop-Jones formula for strongly discrete groups, equating the Hausdorff dimension of the radial limit set with the Poincaré exponent of the group. We end with a short discussion on conformal measures and their relation with Hausdorff and packing measures on the limit set.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc149579/

### Random Iteration of Rational Functions

**Date:**May 2012

**Creator:**Simmons, David

**Description:**It is a theorem of Denker and Urbański that if T:ℂ→ℂ is a rational map of degree at least two and if ϕ:ℂ→ℝ is Hölder continuous and satisfies the “thermodynamic expanding” condition P(T,ϕ) > sup(ϕ), then there exists exactly one equilibrium state μ for T and ϕ, and furthermore (ℂ,T,μ) is metrically exact. We extend these results to the case of a holomorphic random dynamical system on ℂ, using the concepts of relative pressure and relative entropy of such a system, and the variational principle of Bogenschütz. Specifically, if (T,Ω,P,θ) is a holomorphic random dynamical system on ℂ and ϕ:Ω→ ℋα(ℂ) is a Hölder continuous random potential function satisfying one of several sets of technical but reasonable hypotheses, then there exists a unique equilibrium state of (X,P,ϕ) over (Ω,Ρ,θ).

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc115157/

### Reduced Ideals and Periodic Sequences in Pure Cubic Fields

**Date:**August 2015

**Creator:**Jacobs, G. Tony

**Description:**The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in the rings and sub-rings of integers in quadratic fields with periodicity in continued fraction expansions of quadratic numbers. In this thesis, we develop cubic analogs for several infrastructure theorems. We work in the field K=Q(), where 3=m for some square-free integer m, not congruent to ±1, modulo 9. First, we generalize the definition of a reduced ideal so that it applies to K, or to any number field. Then we show that K has only finitely many reduced ideals, and provide an algorithm for listing them. Next, we define a sequence based on the number alpha that is periodic and corresponds to the finite set of reduced principal ideals in K. Using this rudimentary infrastructure, we are able to establish results about fundamental units and reduced ideals for some classes of pure cubic fields. We also introduce an application to Diophantine approximation, in which we present a 2-dimensional analog of the Lagrange value of a badly approximable number, and calculate some examples.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804842/