Modeling Infectious Disease Spread Using Global Stochastic Field Simulation

Modeling Infectious Disease Spread Using Global Stochastic Field Simulation

Date: August 2006
Creator: Venkatachalam, Sangeeta
Description: Susceptibles-infectives-removals (SIR) and its derivatives are the classic mathematical models for the study of infectious diseases in epidemiology. In order to model and simulate epidemics of an infectious disease, a global stochastic field simulation paradigm (GSFS) is proposed, which incorporates geographic and demographic based interactions. The interaction measure between regions is a function of population density and geographical distance, and has been extended to include demographic and migratory constraints. The progression of diseases using GSFS is analyzed, and similar behavior to the SIR model is exhibited by GSFS, using the geographic information systems (GIS) gravity model for interactions. The limitations of the SIR and similar models of homogeneous population with uniform mixing are addressed by the GSFS model. The GSFS model is oriented to heterogeneous population, and can incorporate interactions based on geography, demography, environment and migration patterns. The progression of diseases can be modeled at higher levels of fidelity using the GSFS model, and facilitates optimal deployment of public health resources for prevention, control and surveillance of infectious diseases.
Contributing Partner: UNT Libraries
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases

Date: May 2006
Creator: Abbas, Kaja Moinudeen
Description: Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with ...
Contributing Partner: UNT Libraries
Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Date: August 2009
Creator: O'Neill II, Martin Joseph
Description: Many infectious diseases are spread through interactions between susceptible and infectious individuals. Keeping track of where each exposure to the disease took place, when it took place, and which individuals were involved in the exposure can give public health officials important information that they may use to formulate their interventions. Further, knowing which individuals in the population are at the highest risk of becoming infected with the disease may prove to be a useful tool for public health officials trying to curtail the spread of the disease. Epidemiological models are needed to allow epidemiologists to study the population dynamics of transmission of infectious agents and the potential impact of infectious disease control programs. While many agent-based computational epidemiological models exist in the literature, they focus on the spread of disease rather than exposure risk. These models are designed to simulate very large populations, representing individuals as agents, and using random experiments and probabilities in an attempt to more realistically guide the course of the modeled disease outbreak. The work presented in this thesis focuses on tracking exposure risk to chickenpox in an elementary school setting. This setting is chosen due to the high level of detailed information realistically available to ...
Contributing Partner: UNT Libraries
Social Network Simulation and Mining Social Media to Advance Epidemiology

Social Network Simulation and Mining Social Media to Advance Epidemiology

Date: August 2009
Creator: Corley, Courtney David
Description: Traditional Public Health decision-support can benefit from the Web and social media revolution. This dissertation presents approaches to mining social media benefiting public health epidemiology. Through discovery and analysis of trends in Influenza related blogs, a correlation to Centers for Disease Control and Prevention (CDC) influenza-like-illness patient reporting at sentinel health-care providers is verified. A second approach considers personal beliefs of vaccination in social media. A vaccine for human papillomavirus (HPV) was approved by the Food and Drug Administration in May 2006. The virus is present in nearly all cervical cancers and implicated in many throat and oral cancers. Results from automatic sentiment classification of HPV vaccination beliefs are presented which will enable more accurate prediction of the vaccine's population-level impact. Two epidemic models are introduced that embody the intimate social networks related to HPV transmission. Ultimately, aggregating these methodologies with epidemic and social network modeling facilitate effective development of strategies for targeted interventions.
Contributing Partner: UNT Libraries
Development, Implementation, and Analysis of a Contact Model for an Infectious Disease

Development, Implementation, and Analysis of a Contact Model for an Infectious Disease

Date: May 2009
Creator: Thompson, Brett Morinaga
Description: With a growing concern of an infectious diseases spreading in a population, epidemiology is becoming more important for the future of public health. In the past epidemiologist used existing data of an outbreak to help them determine how an infectious disease might spread in the future. Now with computational models, they able to analysis data produced by these models to help with prevention and intervention plans. This paper looks at the design, implementation, and analysis of a computational model based on the interactions of the population between individuals. The design of the working contact model looks closely at the SEIR model used as the foundation and the two timelines of a disease. The implementation of the contact model is reviewed while looking closely at data structures. The analysis of the experiments provide evidence this contact model can be used to help epidemiologist study the spread of an infectious disease based on the contact rate of individuals.
Contributing Partner: UNT Libraries