Autonomic Control of Heat Rate Variability in Emu (Dromaius novaehollandiae) Hatchlings

Autonomic Control of Heat Rate Variability in Emu (Dromaius novaehollandiae) Hatchlings

Date: Autumn 2002
Creator: Motiwala, Rajesh
Description: Thesis written by a student in the UNT Honors College discussing the role of the autonomic nervous system in the heart rate variability of day-old emu hatchlings. Atropine and propranolol were administered to block the action of cholinegric and adrenegric pathways and thereby reduce heart rate.
Contributing Partner: UNT Honors College
A morphological study of the avian (Gallus domesticus) ductus arteriosi during hatching.

A morphological study of the avian (Gallus domesticus) ductus arteriosi during hatching.

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Belanger, Candace
Description: The ductus arteriosi (DA) are two blood vessels connecting the pulmonary arteries to the descending aorta in the avian embryo. Following hatching, the DA closes, separation of the systemic and pulmonary circulation. I present the morphological changes that occur in the chicken DA during prepipping, internal pipping, external pipping, and hatching. The avian DA consists of two distinct tissue types, a proximal and a distal portion. Histological examination shows developmental differences between the proximal and distal portions of the DA with regard to lumen occlusion, endothelial cells, smooth muscle and elastin. Endothelial cell proliferation begins to occur as early as external pipping, with the lumen almost completely occluded by the 3rd day of post-hatching life. Expression of vascular endothelial growth factor (VEGF) increases in avian endothelial cells during hatching. I provide a morphological timeline of changes in the DA as the chicken develops from embryo to hatchling.
Contributing Partner: UNT Libraries
The role of prostaglandins, nitric oxide and oxygen in the ductus arteriosi of the pre-term chicken embryo (Gallus domesticus).

The role of prostaglandins, nitric oxide and oxygen in the ductus arteriosi of the pre-term chicken embryo (Gallus domesticus).

Date: December 2007
Creator: Greyner, Henry José
Description: The chicken ductus arteriosi (DA) are two embryonic blood vessels that shunt blood away from the non-ventilated lungs and towards the body and chorioallantoic membrane. I show that prostaglandins have a diminished role in maintaining chicken DA patency and nitric oxide inhibits oxygen induced contraction of the day 19 proximal DA in a time dependent manner. The pathways governing oxygen induced contraction in the chicken DA are similar to those found in mammals and include contributions from ROS, Kv channels, L-type Ca2+ channels, and the Rho kinase pathway. Longer exposure to high oxygen generates increased oxygen induced constriction of the day 19 DA that may be mediated through the Rho kinase pathway.
Contributing Partner: UNT Libraries
Retinoic acid Treatment Affects Kidney Development and Osmoregulatory System in the Developing Chicken (Gallus Gallus)

Retinoic acid Treatment Affects Kidney Development and Osmoregulatory System in the Developing Chicken (Gallus Gallus)

Date: May 2011
Creator: Alvine, Travis Douglas
Description: Development is a dynamic process characterized by critical periods in which organ systems are sensitive to changes in the surrounding environment. In the current study, critical windows of embryonic growth and kidney development were assessed in the embryonic chicken. All‐trans retinoic acid (tRA) influences not only organogenesis and cell proliferation, but also targets metanephric kidney nephrogenesis. Embryonic chickens were given a single injection of tRA on embryonic day 8. tRA decreased embryo, kidney, and heart mass from day 16 to day 18. However, mass specific kidney and heart masses showed no differences. Whole blood, plasma, and allantoic fluid osmolality were altered in tRA treated embryos from day 16 to day 18. In addition, hematocrit, red blood cell count, and hemoglobin concentration were altered in tRA treated embryos. The results suggest that although nephrogenesis was not affected by tRA, the developing osmoregulatory system was altered in tRA treated embryos.
Contributing Partner: UNT Libraries
Chronic Hypoxia and Hyperoxia Modifies Morphology and Vegf Expression of the Lungs of the Developing Chicken (Gallus Gallus Domesticus)

Chronic Hypoxia and Hyperoxia Modifies Morphology and Vegf Expression of the Lungs of the Developing Chicken (Gallus Gallus Domesticus)

Date: December 2012
Creator: Lewallen, Melissa Anjanette
Description: This study determines effects of oxygen levels on morphology and VEGF expression of developing chicken lungs following incubation in normoxia (21% O2), hypoxia (15% O2) or hyperoxia (30% O2), until developmental days 16 or 18. Lung morphology was assessed using light microscopy, while VEGF expression was determined with ELISA. In hypoxia, the proportion of parabronchial tissue and parabronchi including lumina increased from day 16 to 18 (61 to 68% and 74.2 to 82.2%, respectively). Non-parabronchial tissue was higher in hypoxia than in hyperoxia on day 16 (26 to 20%). However, by day 18, there were no differences between groups. VEGF expression was 33% higher in hypoxia than in hyperoxia on day 16 (736 vs. 492 pg/ml). On day 18, VEGF expression was 43% higher in hyperoxia than in normoxia (673 to 381pg/ml), and remained elevated by 40% in hypoxia over normoxia (631 pg/ml). VEGF may be a mechanism by which parabronchial tissue is stimulated from day 16 to 18 following exposure to chronic hypoxia.
Contributing Partner: UNT Libraries
Molecular systematics of Baird's pocket gopher (Geomys breviceps)

Molecular systematics of Baird's pocket gopher (Geomys breviceps)

Date: August 2010
Creator: Bodine, Deanna Martinez
Description: Baird's pocket gopher (Geomys breviceps) is found in eastern Texas, eastern Oklahoma, central and western Arkansas, and western Louisiana. The cytochrome-b gene was sequenced and analyzed for 16 pocket gophers from throughout the range of the species. Similar phylogenetic trees were obtained using maximum-parsimony, maximum-likelihood, neighbor-joining, and Bayesian analyses. Two major clades were formed with northern individuals belonging to clade I and southern individuals belonging to clade II. G. b. sagittalis was paraphyletic in relation to G. b. breviceps in all analyses. Based on inconsistencies between the taxonomic classification and systematic relationships within Baird's pocket gopher, a taxonomic restructuring appears warranted.
Contributing Partner: UNT Libraries
Morphological and physiological developmental consequences of parental effects in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio).

Morphological and physiological developmental consequences of parental effects in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio).

Date: August 2008
Creator: Ho, Dao H.
Description: Cardiac, metabolic and growth response of early-stage chicken embryos to perturbations in yolk environment was investigated. Also, effects of parental hypoxia exposure on hypoxia resistance, thermal tolerance and body length of zebrafish larvae were investigated. In the first study, thyroxine, triiodothyronine and testosterone produced differential effects on heart rate and development rate of chicken embryos during the first 4 days of development. Triiodothyronine caused a dose-dependent increase in heart rate when applied at 40 or 70 hours of age, while thyroxine caused a dose-dependent increase in heart rate when applied at 40 hours only. Testosterone and propyl-thiouracil (deiodinase antagonist) did not have an effect on heart rate. Development rate was not changed by thyroxine, triiodothyronine, testosterone or propyl-thiouracil, which suggested that heart rate changes did not result from changes in embryo maturity. In the second study, chicken embryos exposed to yolks of different bird species during early-stage embryonic development showed changes in heart rate, mass-specific oxygen consumption and body mass that scaled with the egg mass, incubation period length, and yolk triiodothyronine and testosterone levels of the species from which yolk was derived. In the third study, this phenomenon was investigated between layer and broiler chickens. Heart rate, oxygen consumption ...
Contributing Partner: UNT Libraries
Establishing genetic and physiological baselines for the black-tailed prairie dog (Cynomys ludovicianus).

Establishing genetic and physiological baselines for the black-tailed prairie dog (Cynomys ludovicianus).

Date: May 2007
Creator: Biggs, Cindy Dawn
Description: The black-tailed prairie dog (Cynomys ludovicianus) has experienced dramatic declines over much of its historical range due to habitat loss, plague, poisonings, and shootings. Many populations now occur as isolated genetic relicts. A multiple locus genetic profile was obtained using microsatellite analyses of six polymorphic nucleotide repeats from 319 black-tailed prairie dogs collected from 16 colonies throughout the state of Texas. This assessment revealed that existing populations have sufficient variation at all six loci to verify the usefulness of this approach as a primary genetic tool in conservation and preservation. The data reveals regional-dependent frequency patterns as well as support for founder/bottleneck effects for several of the 16 sites. Although the prairie dog population in Texas as a whole may appear genetically diverse, considerable genetic divergence has already occurred among the subpopulations (FST = 0.164). Isolation by distance is supported by genic differentiation analysis (P < 0.001) and pairwise correlation analysis between genetic distance and geographic distance (P < 0.001). Prairie dogs from six (COC, LUBA, LUBC, LUBD, LUBE, and TAR) of the original 16 sites have been relocated or exterminated, or were in the process of being relocated. Results indicated the following colonies (COT, DAL, HOW, and HUD) are ...
Contributing Partner: UNT Libraries
Genetic and Environmental Factors that Mediate Survival of Prolonged Oxygen Deprivation in the Nematode Caenorhabditis Elegans

Genetic and Environmental Factors that Mediate Survival of Prolonged Oxygen Deprivation in the Nematode Caenorhabditis Elegans

Date: August 2010
Creator: LaRue, Bobby Lee, Jr.
Description: Ischemic events of even a very short duration are not tolerated Ill in humans. The human cost of ischemia, when looked at as combined cardiovascular disease, dwarfs all other causes of death in the United States. Annually, CVD kills as many people in the US as does cancer, chronic lower respiratory disease, accidents, and diabetes mellitus combined. In 2005 (the latest year for which final statistics are available), CVD was responsible for 864,480 deaths or 35.3 percent of total deaths for the year. In my study, I have used the nematode Caenorhabditis elegans to determine genetic and environmental modulators of oxygen deprivation a key component of ischemia. I have found that animals with mutations in insulin like signaling pathways, neuronal function, electron transport chain components, germline function, and animals that are preconditioned by being raised on a diet of E. coli HT115 bacteria at 25°C have an enhanced ability to survive long-term (>72 hours) anoxia (<.005 kPa O2) at 20°C. The enhanced anoxia survival phenotype partially correlates with increased levels of carbohydrate stores in the nematodes. Suppression of this enhanced anoxia survival phenotype is possible by altering expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, the FOXO transcription factor DAF-16, and ...
Contributing Partner: UNT Libraries
Heart rate and oxygen consumption during the critical prenatal period in chicken embryos (Gallus gallus): Influence of light cues and the onset of pulmonary ventilation.

Heart rate and oxygen consumption during the critical prenatal period in chicken embryos (Gallus gallus): Influence of light cues and the onset of pulmonary ventilation.

Date: December 2004
Creator: Brown, Jessie W.
Description: To examine if a rhythm can be entrained in either heart rate or oxygen consumption in late stage embryos (days 17-19.5) with light as a zeitgeber, chicken embryos were incubated in complete darkness (D:D) and 12:12 light:dark cycle (L:D). Light had no impact on oxygen consumption (390 µL O2∙min-1∙egg-1) but increased heart rate for non-internally pipped embryos (260 to 270 beats∙min-1 during light cycle). Oxygen consumption increased independent of pipping while heart rate increased (255 to 265 beats∙min-1) in D:D embryos due to pipping. A light-induced rhythm or effect occurred in heart rate but not oxygen consumption, suggesting heart rate and oxygen consumption may be uncoupled.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST