### Electrical Conductivity in Thin Films

**Date:**May 1973

**Creator:**Meyer, Frederick Otto

**Description:**This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc164055/

### A Study of the Celestial Gamma-ray Flux

**Date:**June 1967

**Creator:**Keath, Edwin P. (Edwin Paul),1938-

**Description:**This thesis is a study of the celestial gamma-ray flux. It reviews several of the proposed mechanisms for producing high energy gamma rays and describes several of the attempts to detect their presence. Also included is a short historical review of the spark chamber, along with a qualitative description of its operation.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc163905/

### Application of the Wigner Formalism to a Slightly Relativistic Quantum Plasma

**Date:**August 1967

**Creator:**Harper, John H.

**Description:**A slightly relativistic fermion gas is described by the dynamical theory obtained from the Wigner distribution function. The problem is approached in a self-consistent manner including the two-body Darwin Hamiltonian. The goal is to find the departures from equilibrium and dispersion relations for wave propagation in the gas.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130850/

### Quantized Hydrodynamics

**Date:**August 1972

**Creator:**Coomer, Grant C.

**Description:**The object of this paper is to derive Landau's theory of quantized hydrodynamics from the many-particle Schroedinger equation. Landau's results are obtained, together with an additional term in the Hamiltonian.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc131535/

### Homogeneous Canonical Formalism and Relativistic Wave Equations

**Date:**January 1967

**Creator:**Jackson, Albert A.

**Description:**This thesis presents a development of classical canonical formalism and the usual transition schema to quantum dynamics. The question of transition from relativistic mechanics to relativistic quantum dynamics is answered by developing a homogeneous formalism which is relativistically invariant. Using this formalism the Klein-Gordon equation is derived as the relativistic analog of the Schroedinger equation. Using this formalism further, a method of generating other relativistic equations (with spin) is presented.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130781/

### A Study and Critique of the Mean Position Concept in Relativistic Wave Mechanics

**Date:**January 1967

**Creator:**Gebhart, Hugh David

**Description:**The basic concept to be used in studying the question of one-particle interpretations of relativistic wave equations is that of observables and operator representations that are different from the more usual classically motivated observables and representations. In particular, the concept of a mean-position observable will be used to determine to what extent the one-particle "problems" can be resolved.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130778/

### Emergence of Complexity from Synchronization and Cooperation

**Date:**May 2008

**Creator:**Geneston, Elvis L.

**Description:**The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of non-Poisson renewal processes. In particular I introduce two new complex system models, namely the two-state stochastic clocks and the integrate-and-fire stochastic neurons, and investigate its coupled dynamics in different network topologies. Based on the foundations of renewal theory, I show how complexity, as manifested by the occurrence of non-exponential distribution of events, emerges from the interaction of the units of the system. Conclusion is made on the work's applicability to explaining the dynamics of blinking nanocrystals, neuron interaction in the human brain, and synchronization processes in complex networks.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc6107/

### Brownian Movement and Quantum Computers

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2004

**Creator:**Habel, Agnieszka

**Description:**This problem in lieu of thesis is a discussion of two topics: Brownian movement and quantum computers. Brownian movement is a physical phenomenon in which the particle velocity is constantly undergoing random fluctuations. Chapters 2, 3 and 4, describe Brownian motion from three different perspectives. The next four chapters are devoted to the subject of quantum computers, which are the signal of a new era of technology and science combined together. In the first chapter I present to a reader the two topics of my problem in lieu of thesis. In the second chapter I explain the idea of Brownian motion, its interpretation as a stochastic process and I find its distribution function. The next chapter illustrates the probabilistic picture of Brownian motion, where the statistical averages over trajectories are related to the probability distribution function. Chapter 4 shows how to derive the Langevin equation, introduced in chapter 1, using a Hamiltonian picture of a bath with infinite number of harmonic oscillators. The chapter 5 explains how the idea of quantum computers was developed and how step-by-step all the puzzles for the field of quantum computers were created. The next chapter, chapter 6, discus the basic quantum unit of information ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4660/

### Effects of Discharge Tube Geometry on Plasma Ion Oscillations

**Date:**May 1975

**Creator:**Simmons, David Warren

**Description:**This study considers the effect, on plasma ion oscillations, of various lengths of discharge tubes as well as various cross sections of discharge tubes. Four different gases were used in generating the plasma. Gas pressure and discharge voltage and current were varied to obtain a large number of signals. A historical survey is given to familiarize the reader with the field. The experimental equipment and procedure used in obtaining data is given. An analysis of the data obtained is presented along with possible explanations for the observed phenomena. Suggestions for future study are made.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc663636/

### Recombination Rate Coefficient Measurements in the Helium Afterglow

**Date:**August 1969

**Creator:**Wells, William E.

**Description:**This thesis describes a method of determining the recombination rate coefficient experimentally, which does not depend on a specific model of the recombination process. With this method established, results are presented for the recombination rate coefficient measurements at 44.6 Torr.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc131182/

### Steady-state and Dynamic Probe Characteristics in a Low-density Plasma

**Date:**December 1970

**Creator:**Bunting, William David

**Description:**The problem with which this investigation is concerned is that of determining the steady-state and dynamic characteristics of the admittance of a metallic probe immersed in a laboratory plasma which has the low electron densities and low electron temperatures characteristic of the ionospheric plasma. The problem is separated into three related topics: the design and production of the laboratory plasma, the measurement of the steady-state properties of dc and very low frequency probe admittance, and the study of transient ion sheath effects on radio frequency probe admittance.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278232/

### Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

**Date:**December 2003

**Creator:**Wang, Changjie

**Description:**The polymer gels especially hydrogels have a very special structure and useful features such as unusual volume phase transition, compatibility with biological systems, and sensitivity to environmental stimuli (temperature, pH value, electric field, light and more), which lead to many potential applications in physical and biochemical fields. This research includes: (1) the theoretical and experimental studies of polymer gels on swelling kinetics, spinodal decomposition, and solution convection in gel matrix; (2) applications of polymer gels in wound dressing, tissue-simulating optical phantom and gel display. The kinetics of gel swelling has been theoretically analyzed by considering coupled motions of both solvent and polymer network. Analytical solutions of the solvent and the network movement are derived from collective diffusion equations for a long cylindrical and a large disk gel. Kinetics of spinodal decomposition of N-isopropylacrylamide (NIPA) polymer gel is investigated using turbidity and ultrasonic techniques. By probing movement of domains, a possible time-dependent gel structure in the spinodal decomposition region is presented. Theoretical studies of solution convection in gel matrix have been done and more analysis on dimensionless parameters is provided. To enhance the drug uptake and release capacity of silicone rubber (SR), NIPA hydrogel particles have been incorporated into a SR ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4379/

### Perturbation of renewal processes

**Date:**May 2008

**Creator:**Akin, Osman Caglar

**Description:**Renewal theory began development in the early 1940s, as the need for it in the industrial engineering sub-discipline operations research had risen. In time, the theory found applications in many stochastic processes. In this thesis I investigated the effect of seasonal effects on Poisson and non-Poisson renewal processes in the form of perturbations. It was determined that the statistical analysis methods developed at UNT Center for Nonlinear Science can be used to detect the effects of seasonality on the data obtained from Poisson/non-Poisson renewal systems. It is proved that a perturbed Poisson process can serve as a paradigmatic model for a case where seasonality is correlated to the noise and that diffusion entropy method can be utilized in revealing this relation. A renewal model making a connection with the stochastic resonance phenomena is used to analyze a previous neurological experiment, and it was shown that under the effect of a nonlinear perturbation, a non-Poisson system statistics may make a transition and end up in the of Poisson basin of statistics. I determine that nonlinear perturbation of the power index for a complex system will lead to a change in the complexity characteristics of the system, i.e., the system will reach ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc6140/

### Complexity as Aging Non-Poisson Renewal Processes

**Date:**May 2007

**Creator:**Bianco, Simone

**Description:**The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter involved, can generate the same macroscopic outcome, namely an inverse power law distribution density of events occurrence. To solve this ambiguity, a numerical instrument, based on the theoretical analysis of the aging properties of renewal systems, is introduced. The application of this method, called renewal aging experiment, allows us to distinguish if a time series has been generated by a renewal or a modulation process. This method of analysis is then applied to several physical systems, from blinking quantum dots, to the human brain activity, to seismic fluctuations. Theoretical conclusions about the underlying nature of the considered complex systems are drawn.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3706/

### Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

**Date:**December 2007

**Creator:**Bagci, V. M. Kemal

**Description:**This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-binding model. Calculations were within second-order Born-approximation to second-order in disorder parameters. An analytical expression for localization length as a functional of correlations in potentials was found. Anderson localization in DNA molecules were studied in single-channel wire and two-channel models for electron transport in DNA. In both of the models, some DNA sequences exhibited delocalized electron states in their energy spectrum. Studies with two-channel wire model for DNA yielded important link between electron localization properties and genetic information.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5204/

### Mechanism and the Effect of Microwave-Carbon Nanotube Interaction

**Date:**December 2005

**Creator:**Ye, Zhou

**Description:**A series of experimental results about unusual heating of carbon nanotubes by microwaves is analyzed in this dissertation. Two of vibration types, cantilever type (one end is fixed and the other one end is free), the second type is both ends are fixed, have been studied by other people. A third type of forced vibration of carbon nanotubes under an alternating electromagnetic field is examined in this paper. Heating of carbon nanotubes (CNTs) by microwaves is described in terms of nonlinear dynamics of a vibrating nanotube. Results from the model provide a way to understand several observations that have been made. It is shown that transverse vibrations of CNTs during microwave irradiation can be attributed to transverse parametric resonance, as occurs in the analysis of Melde's experiment on forced longitudinal vibrations of a stretched elastic string. For many kinds of carbon nanotubes (SWNT, DWNT, MWNT, ropes and strands) the resonant parameters are found to be located in an unstable region of the parameter space of Mathieu's equation. Third order wave equations are used to qualitatively describe the effects of phonon-phonon interactions and energy transfer from microwaves to CNTs. This result provides another way to input energy from microwaves to carbon ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4919/

### A Study of Some Biological Effects of Non-Ionizing Electromagnetic Radiation

**Date:**December 1996

**Creator:**Park, Young C. (Young Chul), 1960-

**Description:**The experimental studies of this work were done using a microwave cavity spectrometer, Escherichia coli (E-coli) bacteria, and other peripheral equipment. The experiment consists of two steps. First, a general survey of frequencies from 8 GHz to 12 GHz was made. Second, a detailed experiment for specific frequencies selected from the first survey were further studied. Interesting frequency dependent results, such as unusually higher growing or killing rates of E-coli at some frequencies, were found. It is also concluded that some results are genetic, that is, the 2nd, and 3rd subcultures showed the same growing status as the 1st cultures.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278105/

### The Dynamic Foundation of Fractal Operators.

**Date:**May 2003

**Creator:**Bologna, Mauro

**Description:**The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the Kolmogorov-Sinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouville-like approach based on densities, however, is shown to be impossible. ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4235/

### Application of the Finite Element Method to Some Simple Systems in One and Two Dimensions.

**Date:**May 2002

**Creator:**Hunnell, Jason C.

**Description:**The finite element method (FEM) is reviewed and applied to the one-dimensional eigensystems of the isotropic harmonic oscillator, finite well, infinite well and radial hydrogen atom, and the two-dimensional eigensystems of the isotropic harmonic oscillator and the propagational modes of sound in a rectangular cavity. Computer codes that I developed were introduced and utilized to find accurate results for the FEM eigensolutions. One of the computer codes was modified and applied to the one-dimensional unbound quantum mechanical system of a square barrier potential and also provided accurate results.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3087/

### Surface Segregation in Multi-component Systems: Modeling Binary Ni-Al Alloys Using the BFS Method

**Date:**August 2004

**Creator:**Kasmi, Azeddine

**Description:**Although the study of surface segregation has a great technological importance, the work done in the field was for a long time largely restricted to experimental studies and the theoretical work was neglected. However, recent improvements in both first principles and semi-empirical methods are opening a new era for surface scientists. A method developed by Bozzolo, Ferrante, and Smith (BFS) is particularly suitable for complex systems and several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces and the formation of surface alloys. In the following work I introduce the BFS method and apply it to model the Ni-Al alloy through a Monte-Carlo simulation. A comparison between my results and those results published by the group mentioned above was my goal. This thesis also includes a detailed explanation of the application of the BFS method to surfaces of multi-component metallic systems, beyond binary alloys.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4599/

### Ballistic Deposition: Global Scaling and Local Time Series.

**Date:**December 2003

**Creator:**Schwettmann, Arne

**Description:**Complexity can emerge from extremely simple rules. A paradigmatic example of this is the model of ballistic deposition (BD), a simple model of sedimentary rock growth. In two separate Problem-in-Lieu-of Thesis studies, BD was investigated numerically in (1+1)-D on a lattice. Both studies are combined in this document. For problem I, the global interface roughening (IR) process was studied in terms of effective scaling exponents for a generalized BD model. The model used incorporates a tunable parameter B to change the cooperation between aggregating particles. Scaling was found to depart increasingly from the predictions of Kardar-Parisi-Zhang theory both with decreasing system sizes and with increasing cooperation. For problem II, the local single column evolution during BD rock growth was studied via statistical analysis of time series. Connections were found between single column time series properties and the global IR process.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4392/

### Complex Numbers in Quantum Theory

**Date:**August 2015

**Creator:**Maynard, Glenn

**Description:**In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: “What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function.” This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. I identify a freedom/constraint situation encountered by vectors when, employed in accordance with adopted quantum representational methodology, and representing angular momentum states in particular. Complex vectors, quite simply, provide more available adjustable variables than do real vectors. The additional variables relax the constraint situation allowing the theory’s representational program to carry through. This complex number issue, which lies at the deepest foundations of the theory, has implications for important issues located higher in the theory. For example, any unification of the classical and quantum accounts of the settled order of nature, will rest squarely on our ability to account for the introduction of the imaginary unit.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804988/

### Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

**Date:**May 1973

**Creator:**Freeman, Ronald Harold

**Description:**Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc279091/

### Investigation of the Uniaxial Stress Dependence of the Effective Mass in N-Type InSb Using the Magnetophonon Effect

**Date:**December 1971

**Creator:**Alsup, Dale Lynn

**Description:**The magnetophonon effect was used to investigate the uniaxial stress dependence of the effective mass in n-type InSb (indium antimonide).

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc164537/