Temperature dependent rheology of surfactant-hydroxypropyl cellulose solutions.

Temperature dependent rheology of surfactant-hydroxypropyl cellulose solutions.

Date: December 2002
Creator: Snively, C. Todd
Description: The rheology of 1-8% hydroxypropyl cellulose (HPC) solutions has been studied in the temperature range of 20-45 degrees Celsius. The results showed that the relative viscosity at each HPC concentration decreases with increasing temperature. The relative viscosity decreases drastically at about 43 degrees Celsius due to a phase transition. The influence of anionic surfactant, sodium dodecylsulfate (SDS), induced gelation of a 2% HPC solution. The HPC solutions gelled at surfactant SDS concentrations ranging from 0.4 to 1.0 critical micelle concentration (CMC). The gelation of the HPC/SDS hydrogel is explained in the surfactant SDD - bridged HPC linear polymer chains. The complex viscosity - concentration profile was determined below the CMC of the SDS - water pair. The peak itself was a function of frequency indicating the presence of two relaxation times within the gelled network.
Contributing Partner: UNT Libraries
Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties

Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties

Date: December 2000
Creator: Maswood, Syed
Description: In recent developments of composite materials, scientists and engineers have come up with fibers as well as matrices for composites and techniques of blending high cost components with low cost materials. Thus, one creates cost effective composite materials that are as efficient as space age components. One of the major breakthroughs in this area is the innovation of molecular composites, specifically polymeric liquid crystals (PLCs). These materials have excellent mechanical properties such as tensile impact and bending strength. They have excellent chemical resistance, low thermal expansivity, and low flammability. Their low viscosity leads to good processability One major setback in using space age composite technology in commercial applications is the price. Due to the complexity of processing, the cost of space composite materials is skyrocketing. To take the same concept of space age composite materials to create a more economical substitute has become a serious concern among scientists and engineers around the world. The two issues that will be resolved in this thesis are: (1) the potential impact of using PLCs (molecular reinforcement) can have on macro reinforced (heterogeneous composite, HC) long fiber systems; and (2) how strategic placement of the reinforcing layers can affect the macromechanical properties of the ...
Contributing Partner: UNT Libraries
The effects of color concentrate in polyolefins.

The effects of color concentrate in polyolefins.

Access: Use of this item is restricted to the UNT Community.
Date: December 2001
Creator: Flora, Paul
Description: Throughout history consumer products were generally manufactured from wood and metal. They either had to hold their natural color or become subject to painting. When plastics entered the industry, it was recognized for its ease of shaping, re-usability, physical properties and its low cost. One of plastics' greatest benefits is its ability to hold a given color from within allowing it to avoid use of paint. This paper will give a brief overview on the effects of pigments when incorporated in a polyolefin. It will provide a classification of the main types of pigments and how each effect the properties of the product through: crystallization, weatherability, opacity, coloristic values and of course viscosity.
Contributing Partner: UNT Libraries
Characterizaton of Triethoxyfluorosilane and Tetraethoxysilane Based Aerogels

Characterizaton of Triethoxyfluorosilane and Tetraethoxysilane Based Aerogels

Access: Use of this item is restricted to the UNT Community.
Date: December 2001
Creator: Roepsch, Jodi Ann
Description: Aerogels are highly porous, low dielectric constant (low k) materials being considered by the semiconductor industry as an interlayer dielectric. Low k materials are needed to overcome capacitance problems that limit device feature sizes. Precursors triethoxyfluorosilane (TEFS) and tetraethoxysilane (TEOS) were used to prepare bulk aerogels. Samples were prepared by sol-gel methods, and then carbon dioxide supercritically-dried. Effects of varying the water to precursor ratio were studied with respect to aerogel properties and microstructure. Methods of analysis for this study include FTIR-ATR, TEM, RBS, EDS, SEM, dielectric constant determination by impedance and surface area by gas adsorption. Si-F bonds were determined to be present in both acid- and base-catalyzed TEFS as well as HF-catalyzed TEOS. Fluorine promotes a fractal network microstructure as opposed to a particle-like microstructure. Surface area and dielectric constant were determined to increase slightly with increases in the water to precursor ratio.
Contributing Partner: UNT Libraries
Characterization of methyltrimethoxysilane sol-gel polymerization and the resulting aerogels.

Characterization of methyltrimethoxysilane sol-gel polymerization and the resulting aerogels.

Access: Use of this item is restricted to the UNT Community.
Date: August 2003
Creator: Dong, Hanjiang
Description: Methyl-functionalized porous silica is of considerable interest as a low dielectric constant film for semiconductor devices. The structural development of these materials appears to affect their gelation behaviors and impact their mechanical properties and shrinkage during processing. 29Si solution NMR was used to follow the structural evolution of MTMS (methyltrimethoxysilane) polymerization to gelation or precipitation, and thus to better understand the species that affect these properties and gelation behaviors. The effects of pH, water concentration, type of solvents, and synthesis procedures (single step acid catalysis and two-step acid/base catalysis) on MTMS polymerization were discussed. The reactivity of silicon species with different connectivity and the extent of cyclization were found to depend appreciably on the pH value of the sol. A kinetic model is presented to treat the reactivity of both silicon species involved in condensations separately based on the inductive and steric effects of these silicon species. Extensive cyclization in the presence of acid, which was attributed to the steric effects among numerous reaction pathways for the first time, prevents MTMS gelation, whereas gels were obtained from the two-step method with nearly random condensations. The experimental degree of condensation (DC) at the gel point using the two-step procedure was determined ...
Contributing Partner: UNT Libraries
Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Date: August 2005
Creator: Pendse, Siddhi
Description: The effect of incorporation of montmorillonite layered silicate (MLS) on poly (ethylene terephthalate) (PET) matrix was investigated. MLS was added in varying concentration of 1 to 5 weight percent in the PET matrix. DSC and polarized optical microscopy were used to determine the crystallization effects of MLS addition. Non isothermal crystallization kinetics showed that the melting temperature and crystallization temperature decrease as the MLS percent increases. This delayed crystallization along with the irregular spherulitic shape indicates hindered crystallization in the presence of MLS platelets. The influence of this morphology was related with the fracture toughness of PET nanocomposites using essential work of fracture coupled with the infra red (IR) thermography. Both the essential as well as non essential work of fracture decreased on addition of MLS with nanocomposite showing reduced toughness.
Contributing Partner: UNT Libraries
FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

FEM of nanoindentation on micro- and nanocrystalline Ni: Analysis of factors affecting hardness and modulus values.

Date: August 2005
Creator: Pothapragada, Raja Mahesh
Description: Nanoindentation is a widely used technique to measure the mechanical properties of films with thickness ranging from nanometers to micrometers. A much better understanding of the contact mechanics is obtained mostly through finite element modeling. The experiments were modeled using the software package Nano SP1 that is based on COSMOSM™ (Structural Research & Analysis Corp, www.cosmosm.com), a finite element code. The fundamental material properties affecting pile-up are the ratio of the effective modulus to yield stress Eeff/σ and the work hardening behavior. Two separate cases of work hardening rates were considered; one with no work hardening rate and other with a linear work hardening rate. Specifically, it is observed that pile up is large only when hf/hmax is close to one and degree of work hardening rate is small. It should also be noted that when hf/hmax < 0.7 very little pile-up is observed no matter what the work-hardening behavior of the material. When pile-up occurs the contact area is greater than that predicted by the experimental methods and both the hardness and modulus are overestimated. In this report the amount by which these properties are overestimated are studied and got to be around 22% approx. Bluntness of the tip ...
Contributing Partner: UNT Libraries
Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Date: May 2005
Creator: Strauss, William C.
Description: Polystyrene (PS) nanocomposite foams were prepared using supercritical fluid (SCF) CO2 as a solvent and blowing agent. PS was first in-situ polymerized with a range of concentrations of montmorillonite layered silicate (MLS). The polymerized samples were then compression molded into 1 to 2mm thick laminates. The laminates were foamed in a batch supercritical CO2 process at various temperatures and pressures from 60°-85°C and 7.6-12MPa. The resulting foams were analyzed by scanning electron microscopy to determine effect of MLS on cellular morphology. Differential scanning calorimetry was used to determine the impact of nanocomposite microstructure on glass transition of the foamed polymer. X-ray diffraction spectra suggested that the PS/MLS composite had an intercalated structure at both the 1% and 3% mixtures, and that the intercalation may be enhanced by the foaming process.
Contributing Partner: UNT Libraries
Effects of Thickness and Indenter Tip Geometry in Nanoindentation of Nickel Films

Effects of Thickness and Indenter Tip Geometry in Nanoindentation of Nickel Films

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Parakala, Padma
Description: Nanoindentation has become a widely used technique to measure the mechanical properties of materials. Due to its capability to deform materials in micro- and nano-scale, nanoindentation has found more applications in characterizing the deformation behavior and determining the mechanical properties of thin films and coatings. This research deals with the characterization of samples received from Center for Advanced Microstructures and Devices (CAMD) and Integran Technologies Inc., Toronto, Canada and the objective of this investigation was to utilize the experimental data obtained from nanoindentation to determine the deformation behavior, mechanical properties of thin films on substrates and bulk materials, and the effect of geometrically different indenters (Berkovich, cubecorner, and conical). X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis were performed on these materials to determine the crystal orientation, grain size of the material, and also to measure any substrate effects like pile-up or sin-in respectively. The results indicate that indentation size effect (ISE) strongly depends on shape of the indenter and less sensitive to penetration depth where as the hardness measurements depends on shape of indenter and depth of penetration. There is a negligible strain rate dependency of hardness at deeper depths ...
Contributing Partner: UNT Libraries
Determination of wear in polymers using multiple scratch test.

Determination of wear in polymers using multiple scratch test.

Date: August 2004
Creator: Damarla, Gowrisankar
Description: Wear is an important phenomenon that occurs in all the polymer applications in one form or the other. However, important links between materials properties and wear remain illusive. Thus optimization of material properties requires proper understanding of polymer properties. Studies to date have typically lacked systematic approach to all polymers and wear test developed are specific to some polymer classes. In this thesis, different classes of polymers are selected and an attempt is made to use multiple scratch test to define wear and to create a universal test procedure that can be employed to most of the polymers. In each of the materials studied, the scratch penetration depth s reaches a constant value after certain number of scratches depending upon the polymer and its properties. Variations in test parameters like load and speed are also studied in detail to understand the behavior of polymers and under different conditions. Apart from polystyrene, all the other polymers studied under multiple scratch test reached asymptotes at different scratch numbers.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST