Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Date: December 2010
Creator: Akel, Amal
Description: Super-resolution 3D imaging was achieved using newly synthesized photoactivatable quantum dot (PAQ dot) probes. Quantum dots were modified with a novel quencher system to make them photoactivatable. The unique properties of these PAQ dots enable single-fluorophore localization in three dimensions using a confocal microscopy optical sectioning method. Myosin and tropomyosin of rabbit myofibrilar bundles were specifically labeled with the newly synthesized PAQ dot. A sufficient number of single quantum dots were photoactivated, localized and reduced to their centroid and then reconstructed to a super-resolution image. The acquired super-resolution image shows a lateral and an axial sub-diffraction resolution and demonstrates ultrafine striations with widths less than 70 nm that are not evident by conventional confocal microscopy. The striations appear to be related to nebulin thin filament binding protein. This newly developed imaging system is cutting edge for its high resolution and localization as well its simplicity and convenience.
Contributing Partner: UNT Libraries
Zebrafish Von Willebrand Factor

Zebrafish Von Willebrand Factor

Date: August 2012
Creator: Carrillo, Maira M.
Description: In humans, von Willebrand factor (vWF) is a key component in hemostasis and acts as a 'cellular adhesive' by letting the circulating platelets bind to exposed subendothelium. It also acts as a carrier and stabilizer of factor VIII (FVIII). A dysfunction or reduction of vWF leads to von Willebrand disease (vWD), resulting in bleeding phenotype which affects 1% of the population. Currently there are a variety of animal models used for the study of vWF and vWD; however, they do not possess the advantages found in zebrafish. Therefore, we set out to establish zebrafish as a model for the investigation of vWF and vWD through the use of bioinformatics and various molecular techniques. Using bioinformatics we found that the vWF gene is located on chromosome 18, that the GPIb? protein sequence is conserved. Confirmation of vWF production was shown by means of immunostaining and by RT-PCR, in thrombocytes as well as in veins and arteries. Evidence of vWF involvement in hemostasis and thrombosis was shown using MO and VMO technology to produce a vWD like phenotype, resulting in an increase in TTO and TTA, as well as a reduction in FVIII when blood was tested using the kPTT assay, coinciding ...
Contributing Partner: UNT Libraries
Expression analysis of the fatty acid desaturase 2-4 and 2-3 genes from Gossypium hirsutum in transformed yeast cells and transgenic Arabidopsis plants.

Expression analysis of the fatty acid desaturase 2-4 and 2-3 genes from Gossypium hirsutum in transformed yeast cells and transgenic Arabidopsis plants.

Date: August 2008
Creator: Zhang, Daiyuan
Description: Fatty acid desaturase 2 (FAD2) enzymes are phosphatidylcholine desaturases occurring as integral membrane proteins in the endoplasmic reticulum membrane and convert monounsaturated oleic acid into polyunsaturated linoleic acid. The major objective of this research was to study the expression and function of two cotton FAD2 genes (the FAD2-3 and FAD2-4 genes) and their possible role in plant sensitivity to environmental stress, since plants may increase the polyunsaturated phospholipids in membranes under environmental stress events, such as low temperature and osmotic stress. Two FAD2 cDNA clones corresponding to the two FAD2 genes have been isolated from a cotton cDNA library, indicating both genes are truly expressed in cotton. Model yeast cells transformed with two cotton FAD2 genes were used to study the chilling sensitivity, ethanol tolerance, and growth rate of yeast cells. The expression patterns of the two FAD2 genes were analyzed by reverse transcription polymerase chain reactions (RT-PCR) and Western blot analyses in cotton plants under different treatment conditions. The coding regions of both FAD2 genes were inserted downstream from the CaMV 35S promoter in the pMDC gateway binary vector system. Five different FAD2/pMDC constructs were transformed into the Arabidopsis fad2 knockout mutant background, and multiple potential transgenic Arabidopsis plant ...
Contributing Partner: UNT Libraries