### Around the Fibonacci Numeration System

**Date:**May 2007

**Creator:**Edson, Marcia Ruth

**Description:**Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3676/

### Characterizations of Continua of Finite Degree

**Date:**August 2006

**Creator:**Irwin, Shana

**Description:**In this thesis, some characterizations of continua of finite degree are given. It turns out that being of finite degree (by formal definition) can be described by saying there exists an equivalent metric in which Hausdorff linear measure of the continuum is finite. I discuss this result in detail.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5367/

### A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions

**Date:**May 2004

**Creator:**Vlasic, Andrew

**Description:**We follow a research paper that J. Elstrodt published in 1998 to prove the Prime Number Theorem for arithmetic progressions. We will review basic results from Dirichlet characters and L-functions. Furthermore, we establish a weak version of the Wiener-Ikehara Tauberian Theorem, which is an essential tool for the proof of our main result.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4476/

### Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

**Date:**May 2005

**Creator:**Coiculescu, Ion

**Description:**In this dissertation, we study the dynamics, fractal geometry and the topology of the Julia set of functions in the family H which is a set in the class S, the Speiser class of entire transcendental functions which have only finitely many singular values. One can think of a function from H as a generalized expanding function from the cosh family. We shall build a version of thermodynamic formalism for functions in H and we shall show among others, the existence and uniqueness of a conformal measure. Then we prove a Bowen's type formula, i.e. we show that the Hausdorff dimension of the set of returning points, is the unique zero of the pressure function. We shall also study conjugacies in the family H, perturbation of functions in the family and related dynamical properties. We define Perron-Frobenius operators for some functions naturally associated with functions in the family H and then, using fundamental properties of these operators, we shall prove the important result that the Hausdorff dimension of the subset of returning points depends analytically on the parameter taken from a small open subset of the n-dimensional parameter space.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4783/

### Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank

**Date:**August 2013

**Creator:**Dahal, Rabin

**Description:**Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283833/

### Random Iteration of Rational Functions

**Date:**May 2012

**Creator:**Simmons, David

**Description:**It is a theorem of Denker and Urbański that if T:ℂ→ℂ is a rational map of degree at least two and if ϕ:ℂ→ℝ is Hölder continuous and satisfies the “thermodynamic expanding” condition P(T,ϕ) > sup(ϕ), then there exists exactly one equilibrium state μ for T and ϕ, and furthermore (ℂ,T,μ) is metrically exact. We extend these results to the case of a holomorphic random dynamical system on ℂ, using the concepts of relative pressure and relative entropy of such a system, and the variational principle of Bogenschütz. Specifically, if (T,Ω,P,θ) is a holomorphic random dynamical system on ℂ and ϕ:Ω→ ℋα(ℂ) is a Hölder continuous random potential function satisfying one of several sets of technical but reasonable hypotheses, then there exists a unique equilibrium state of (X,P,ϕ) over (Ω,Ρ,θ).

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc115157/

### The Global Structure of Iterated Function Systems

**Date:**May 2009

**Creator:**Snyder, Jason Edward

**Description:**I study sets of attractors and non-attractors of finite iterated function systems. I provide examples of compact sets which are attractors of iterated function systems as well as compact sets which are not attractors of any iterated function system. I show that the set of all attractors is a dense Fs set and the space of all non-attractors is a dense Gd set it the space of all non-empty compact subsets of a space X. I also investigate the small trans-finite inductive dimension of the space of all attractors of iterated function systems generated by similarity maps on [0,1].

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc9917/

### Lyapunov Exponents, Entropy and Dimension

**Date:**August 2004

**Creator:**Williams, Jeremy M.

**Description:**We consider diffeomorphisms of a compact Riemann Surface. A development of Oseledec's Multiplicative Ergodic Theorem is given, along with a development of measure theoretic entropy and dimension. The main result, due to L.S. Young, is that for certain diffeomorphisms of a surface, there is a beautiful relationship between these three concepts; namely that the entropy equals dimension times expansion.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4559/

### Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2009

**Creator:**Bajracharya, Neeraj

**Description:**Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc28376/