Modeling Transition Metal Catalysts for Small Molecule Activation and Functionalization

Modeling Transition Metal Catalysts for Small Molecule Activation and Functionalization

Date: May 2013
Creator: Figg, Travis M.
Description: There is a high demand for the development of processes for the conversion of ubiquitous molecules into industrially useful commodities. Transition metal catalysts are often utilized for the activation and functionalization of small organic molecules due to their diverse nature and proven utility with a myriad of chemical transformations. The functionalization of methane (CH4) and dinitrogen (N2) to methanol (CH3OH) and ammonia (NH3) respectively is of particular interest; however, both methane and dinitrogen are essentially inert due to the inherit strength of their bonds. In this dissertation a series of computational studies is performed to better understand the fundamental chemistry behind the functionalization of methane and the activation of dinitrogen in a homogeneous environment. A catalytic cycle is proposed for the oxy-functionalization of methane to methanol. The cycle consists of two key steps: (1) C-H activation across a metal-alkoxide bond (M-OR), and (2) regeneration of the M-OR species through an oxy-insertion step utilizing external oxidants. The C-H activation step has been extensively studied; however, the latter step is not as well understood with limited examples. For this work, we focus on the oxy-insertion step starting with a class of compounds known to do C-H activation (i.e., Pt(II) systems). Computational studies ...
Contributing Partner: UNT Libraries
Water-soluble Phosphors for Hypoxia Detection in Chemical and Biological Media

Water-soluble Phosphors for Hypoxia Detection in Chemical and Biological Media

Access: Use of this item is restricted to the UNT Community.
Date: December 2012
Creator: Satumtira, Nisa Tara
Description: Water-soluble Pt(II) phosphors exist predominantly for photophysical studies. However, fewer are known to be candidates for cisplatin derivatives. If such a molecule could exist, it would be efficient at not only destroying the cancerous cells which harm the body, but the destruction would also be traceable within the human body as it occurred. Herein, research accomplished in chemistry describes the photophysical properties of a water-soluble phosphor. Spectroscopically, this phosphor is unique in that it possesses a strong green emission at room temperature in aqueous media. Its emission is also sensitive to the gaseous environment. These properties have been expanded to both analytical and biological applications. Studies showing the potential use of the phosphor as a heavy metal remover from aqueous solutions have been accomplished. The removal of toxic heavy metals was indicated by the loss of emission as well as the appearance of a precipitate. The gaseous sensitivity was elicited to be used as a potential cancerous cell biomarker. In vivo studies were accomplished in a wide variety of species, including bacteria (E. coli), worms (C. elegans), small crustaceans (Artemia), and fish (D. rerio and S. ocellatus). The phosphor in question is detectable in all of the above. This fundamental ...
Contributing Partner: UNT Libraries
A Comparative Study of Errors in Chemistry and English Found in Examination Papers of Freshman Chemistry

A Comparative Study of Errors in Chemistry and English Found in Examination Papers of Freshman Chemistry

Date: August 1938
Creator: Phillips, Annie
Description: This study attempts to discover what types of errors are commonly made by students in freshman chemistry classes. It considers the errors resulting from the students' lack of knowledge of the subject taught, and errors attributed to their failure to use correct English in their expression of ideas.
Contributing Partner: UNT Libraries
Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Date: May 2009
Creator: Belland, Joshua
Description: Web-based homework systems are becoming more common in general chemistry as instructors face ever-increasing enrollment. Yet providing meaningful feedback on assignments remains of the utmost importance. Chemistry instructors consider completion of homework integral to students' success in chemistry, yet only a few studies have compared the use of Web-based systems to the traditional paper-and-pencil homework within general chemistry. This study compares the traditional homework system to four different Web-based systems. Data from eight, semester classes consisting of a diagnostic pre-test, final semester grades, and the number of successful and unsuccessful students are analyzed. Statistically significant results suggest a chemistry instructor should carefully consider options when selecting a homework system.
Contributing Partner: UNT Libraries
Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah

Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah

Date: April 1, 1996
Creator: Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A. & Anderson, A.W.
Description: The State of Utah, Department of Environmental Quality (DEQ), Division of Solid and Hazardous Waste (DSHW), has declared residues resulting from the demilitarization, treatment, cleanup, and testing of military chemical agents to be hazardous wastes. These residues have been designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). The RCRA regulations (40 Code of Federal Regulations [CFR] 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist,{close_quotes} if it can be demonstrated that such wastes are not hazardous. The U.S. Army Test and Evaluation Command (TECOM) believes that certain categories of F999 residues are not hazardous and has obtained assistance from Argonne National Laboratory (Argonne) to make the delisting demonstration. The objective of this project is to delist chemical agent decontaminated residues resulting from materials testing activities and to delist a remediation residue (e.g., contaminated soil). To delist these residues, it must be demonstrated that the residues (1) do not contain hazardous quantities of the listed agents; (2) do not contain hazardous quantities of constituents listed in 40 CFR Part 261, Appendix VIII; (3) do not exhibit other characteristics that could ...
Contributing Partner: UNT Libraries Government Documents Department
Chemistry and Materials Science progress report, FY 1994. Revision 2

Chemistry and Materials Science progress report, FY 1994. Revision 2

Date: January 1, 1996
Creator: unknown
Description: Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.
Contributing Partner: UNT Libraries Government Documents Department
The incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi into simulated nuclear waste glasses: Literature study

The incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi into simulated nuclear waste glasses: Literature study

Date: February 1, 1996
Creator: Langowski, M.H.
Description: Waste currently stored on the Hanford Reservation in underground tanks will be into High Level Waste (HLW) and Low Level Waste (LLW). The HLW melter will high-level and transuranic wastes to a vitrified form for disposal in a geological repository. The LLW melter will vitrify the low-level waste which is mainly a sodium solution. Characterization of the tank wastes is still in progress, and the pretreatment processes are still under development Apart from tank-to-tank variations, the feed delivered to the HLW melter will be subject to process control variability which consists of blending and pretreating the waste. The challenge is then to develop glass formulation models which can produce durable and processable glass compositions for all potential vitrification feed compositions and processing conditions. The work under HLW glass formulation is to study and model glass and melt pro functions of glass composition and temperature. The properties of interest include viscosity, electrical conductivity, liquidus temperature, crystallization, immiscibility durability. It is these properties that determine the glass processability and ac waste glass. Apart from composition, some properties, such as viscosity are affected by temperature. The processing temperature may vary from 1050{degrees}C to 1550{degrees}C dependent upon the melter type. The glass will also ...
Contributing Partner: UNT Libraries Government Documents Department
Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

Date: June 1, 1999
Creator: Jubin, R.T.
Description: This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.
Contributing Partner: UNT Libraries Government Documents Department
Chemical structure and dynamics. Annual report 1994

Chemical structure and dynamics. Annual report 1994

Date: July 1, 1995
Creator: Colson, S.D.
Description: The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, ...
Contributing Partner: UNT Libraries Government Documents Department
Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

Date: July 1, 1990
Creator: Carlos, B.A.; Bish, D.L. & Chipera, S.J.
Description: The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides ...
Contributing Partner: UNT Libraries Government Documents Department
FIRST PREV 1 2 3 4 5 NEXT LAST