### Topological uniqueness results for the special linear and other classical Lie Algebras.

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2001

**Creator:**Rees, Michael K.

**Description:**Suppose L is a complete separable metric topological group (ring, field, etc.). L is topologically unique if the Polish topology on L is uniquely determined by its underlying algebraic structure. More specifically, L is topologically unique if an algebraic isomorphism of L with any other complete separable metric topological group (ring, field, etc.) induces a topological isomorphism. A local field is a locally compact topological field with non-discrete topology. The only local fields (up to isomorphism) are the real, complex, and p-adic numbers, finite extensions of the p-adic numbers, and fields of formal power series over finite fields. We establish the topological uniqueness of the special linear Lie algebras over local fields other than the complex numbers (for which this result is not true) in the context of complete separable metric Lie rings. Along the way the topological uniqueness of all local fields other than the field of complex numbers is established, which is derived as a corollary to more general principles which can be applied to a larger class of topological fields. Lastly, also in the context of complete separable metric Lie rings, the topological uniqueness of the special linear Lie algebra over the real division algebra of quaternions, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3000/

### Borel Determinacy and Metamathematics

**Date:**December 2001

**Creator:**Bryant, Ross

**Description:**Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3061/

### Infinite Planar Graphs

**Date:**May 2000

**Creator:**Aurand, Eric William

**Description:**How many equivalence classes of geodesic rays does a graph contain? How many bounded automorphisms does a planar graph have? Neimayer and Watkins studied these two questions and answered them for a certain class of graphs. Using the concept of excess of a vertex, the class of graphs that Neimayer and Watkins studied are extended to include graphs with positive excess at each vertex. The results of this paper show that there are an uncountable number of geodesic fibers for graphs in this extended class and that for any graph in this extended class the only bounded automorphism is the identity automorphism.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2545/

### Spaces of Compact Operators

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2004

**Creator:**Ghenciu, Ioana

**Description:**In this dissertation we study the structure of spaces of operators, especially the space of all compact operators between two Banach spaces X and Y. Work by Kalton, Emmanuele, Bator and Lewis on the space of compact and weakly compact operators motivates much of this paper. Let L(X,Y) be the Banach space of all bounded linear operators between Banach spaces X and Y, K(X,Y) be the space of all compact operators, and W(X,Y) be the space of all weakly compact operators. We study problems related to the complementability of different operator ideals (the Banach space of all compact, weakly compact, completely continuous, resp. unconditionally converging) operators in the space of all bounded linear operators. The structure of Dunford-Pettis sets, strong Dunford-Pettis sets, and certain spaces of operators is studied in the context of the injective and projective tensor products of Banach spaces. Bibasic sequences are used to study relative norm compactness of strong Dunford-Pettis sets. Next, we use Dunford-Pettis sets to give sufficient conditions for K(X,Y) to contain c0.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4463/

### Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

**Date:**May 2007

**Creator:**Brooks, Evan

**Description:**A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3702/

### The Pettis Integral and Operator Theory

**Access:**Use of this item is restricted to the UNT Community.

**Date:**August 2001

**Creator:**Huettenmueller, Rhonda

**Description:**Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-toweak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2844/

### Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions

**Date:**December 2002

**Creator:**Valdes, LeRoy I.

**Description:**Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3304/

### Math Anxiety in Fundamentals of Algebra Students

**Date:**Spring 2008

**Creator:**Draznin, Sara

**Description:**Thesis written by a student in the UNT Honors College discussing her experiences as a math tutor in math classes with traditionally high dropout rates. In addition, research into math anxiety is explored and evaluated.

**Contributing Partner:**UNT Honors College

**Permallink:**digital.library.unt.edu/ark:/67531/metadc146542/

### A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities

**Date:**May 2001

**Creator:**May, Russell J.

**Description:**Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2789/

### Polish Spaces and Analytic Sets

**Date:**August 1997

**Creator:**Muller, Kimberly (Kimberly Orisja)

**Description:**A Polish space is a separable topological space that can be metrized by means of a complete metric. A subset A of a Polish space X is analytic if there is a Polish space Z and a continuous function f : Z —> X such that f(Z)= A. After proving that each uncountable Polish space contains a non-Borel analytic subset we conclude that there exists a universally measurable non-Borel set.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277605/