Functional Characterization of Mtnip/latd’s Biochemical and Biological Function

Functional Characterization of Mtnip/latd’s Biochemical and Biological Function

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Bagchi, Rammyani
Description: Symbiotic nitrogen fixation occurs in plants harboring nitrogen-fixing bacteria within the plant tissue. The most widely studied association is between the legumes and rhizobia. In this relationship the plant (legumes) provides the bacteria (rhizobia) with reduced carbon derived from photosynthesis in exchange for reduced atmospheric nitrogen. This allows the plant to survive in soil, which is low in available of nitrogen. Rhizobia infect and enter plant root and reside in organs known as nodules. In the nodules the bacteria fix atmospheric nitrogen. The association between the legume, Medicago truncatula and the bacteria Sinorhizobium meliloti, has been studied in detail. Medicago mutants that have defects in nodulation help us understand the process of nitrogen fixation better. One such mutant is the Mtnip-1. Mtnip-1 plants respond to S. meliloti by producing abnormal nodules in which numerous aberrant infection threads are produced, with very rare rhizobial release into host plant cells. The mutant plant Mtnip-1 has an abnormal defense-like response in root nodules as well as defects in lateral root development. Three alleles of the Mtnip/latd mutants, Mtnip-1, Mtlatd and Mtnip-3 show different degrees of severity in their phenotype. Phylogenetic analysis showed that MtNIP/LATD encodes a protein belonging to the NRT1(PTR) family of ...
Contributing Partner: UNT Libraries
Functional Assessment of the Medicago truncatula NIP/LATD Protein Demonstrates That It Is a High-Affinity Nitrate Transporter

Functional Assessment of the Medicago truncatula NIP/LATD Protein Demonstrates That It Is a High-Affinity Nitrate Transporter

Date: October 2012
Creator: Bagchi, Rammyani; Salehin, Mohammad; Adeyemo, O. Sarah; Salazar, Carolina; Shulaev, Vladimir; Sherrier, D. Janine et al.
Description: Article on the functional assessment of the Medicago truncatula NIP/LATD protein demonstrating that it is a high-affinity nitrate transporter.
Contributing Partner: UNT College of Arts and Sciences