Search Results

Statistical relationship between median visibility and conditions of worst-case manmade impact on visibility
A study was conducted of the statistical relationships between median visibility and the levels of visibility associated with worst-case manmade impacts. The data base for the study consisted of midday visibility recordings for the years 1974-1976 at 28 suburban/nonurban airports throughout the United States. The visibility recordings were converted to estimates of extinction coefficients with the use of the Koschmeider formula. The data were sorted according to meteorology in order to eliminate days that were obviously dominated by natural causes of poor visibility. Three approaches were used for relating worst-case (90th through 99th percentile) extinction to median extinction. The first approach was based upon frequency distribution functions. The second used observed ratios of upper percentile to median extinction. The third employed regression techniques. All of the relationships were formulated and evaluated with the 1974-1976 data on a national/annual basis as well as regional/quarterly basis. Performance tests were also run against 1954-1956 data at 11 of the 28 sites. Simple ratio relationships are recommended for use in translating median visibility impacts into worst-case impacts. The errors associated with these ratio models are approximately 30%, which is less than the error typically associated with mathematical dispersion models.
Photovoltaic systems and applications
Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.
Airport Solar Photovoltaic Concentrator Project. Phase 1 - final report, June 1, 1978-February 28, 1979
The system design, analysis, and specification, site preparation, and operation and evaluation plan for a 500 kWe photovoltaic power supply to be located at the Phoenix Sky Harbor International Airport in Phoenix, Arizona, are presented. The solar cell arrays are concentrator silicon solar cells with tracking 70X Cassegrain-type concentrators. The power conditioning system, tracking system, and control systems are described in detal. Environmental impact studies are described. Component specifications and drawings are included. (WHK)
Fresnel/photovoltaic concentrator application experiment for the Dallas-Fort Worth airport. Phase 1: system design, final technical report, 1 June 1978-28 February 1979
This Phase I Final Report summarizes the analytical, experimental, design, and specification efforts for the first nine months of the Dallas/Fort Worth Airport Fresnel/Photovoltaic Concentrator Application Experiment. The overall objective of the complete three-phase program is to develop and demonstrate a unique photovoltaic concentrator total energy system which, when mass-produced, will provide electrical and thermal energy at costs competitive with conventional energy sources. Toward this objective, the Phase I - System Design contract has been completed, resulting in a final system design, analytical definition of system performance and economics, and a successfully tested prototype collector which fully verified performance predictions. The proposed system will utilize 245 m/sup 2/ of E-Systems linear Fresnel photovoltaic collectors to provide 25 kW/sub e/ (AC) of power and 140 kW/sub t/ of heat to the Central Utility Facility of Dallas/Fort Worth Airport. The electric power will be used to meet a continuous lighting load, while the thermal energy will be used to preheat boiler feedwater. Peak system efficiencies will be 10.2% electric (insolation to net AC output) and 56% thermal (insolation to net heat delivered). Annual efficiencies will be 8.4% electric and 49% thermal. Production system economics are attractive in the near term: 7 cents/kWh electricity and $7/MMBtu heat (1975 $) could be achieved by 1981 with limited production. With higher production, these costs could be halved by 1990.
Airport Privatization: Issues and Options for Congress
This report discusses airport privatization, particularly the low participation in the Airport Privatization Pilot Program (APPP) and the policy changes that would be required to encourage more airports to privatize. It provides background on privatization in general, the APPP and reasons why it has not stimulated privatization, privatization in Europe and Canada, and related issues and options.
Draft Guidance: Response, Remediation, and Recovery Checklist for Chemically Contaminated Facilities
A key part of preparedness in the event of a chemical warfare agent (CWA) or toxic industrial chemical (TIC) release at a large facility, such as an airport or subway, is to develop a concept of operations that allows for an effective incident response and recovery. This document is intended as a component of the concept of operations and will be used in the Emergency Operations Center (EOC) as a decision tool for the Unified Command (UC). The Checklist for Facility Response, Remediation, and Recovery presented in this document is principally focused on the Consequence Management Phase (see Figure 1; LLNL 2007a and 2007b) of a chemical release. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, personnel responsible for managing chemical response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a UC in the event of a CWA or TIC attack. A UC is created when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or a UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase (see Figure 1), the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase …
Full Fuel-Cycle Comparison of Forklift Propulsion Systems.A
Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.
Segmentation of x-ray images using Probabilistic Relaxation Labeling
Segmentation is a process of separating objects of interest from their background or from other objects in an image. Without a suitable segmentation scheme, it is very difficult to detect contraband in X-rays images. In this paper, a Probabilistic Relaxation Labeling (PRL) segmentation scheme is presented and compared with other segmentation methods. PRL segmentation is an interative algorithm that labels each pixel in an image by cooperative use of two information sources: the pixel probability and the degree of certainty of its probability supported by the neighboring pixels. The practical implementation and results of the PRL segmentation on X-ray baggage images are also discussed and compared with other segmentation methods. 13 refs., 12 figs.
Sandia photovoltaic systems definition and application experiment projects
A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.
Formerly utilized MED/AEC sites Remedial Action Program. Radiological survey of the St. Louis Airport Storage Site, St. Louis, Missouri. Final report. [U, Ra-bearing wastes stored in 1940-60's]
Results of two radiological surveys of the St. Louis-Lambert Airport property, formerly known as the Airport Storage Site, St. Louis, Missouri, are presented. Uranium- and radium-bearing waste materials were stored from the 1940's to the late 1960's in this area. The surveys included direct measurements of beta-gamma radiation; determination of uranium, actinium, and radium concentrations in soil samples and from bore holes; determination of radionuclide concentrations in groundwater and surface water; measurement of radon flux from the ground surface; and measurements of /sup 222/Rn in air near the site. Results indicate that some offsite drainage pathways are becoming contaminated, probably by runoff from the site; no migration of /sup 222/Rn from the site was observed.
Central airport energy systems using alternate energy sources
The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.
Acceptability testing of radioluminescent lights for VFR-night air taxi operations
Tritium-powered radioluminescent (RL) lights have been under development for remote, austere, and tactical airfield lighting applications. The State of Alaska has requested FAA approval for use of the technology as a safe alternative lighting system to meet the airfield lighting needs of air taxi operations and general aviation in the state. The tests described in this report were performed by PNL for the DOE Defense Byproducts Production and Utilization Program. These tests are a step toward gaining the required approvals.
Hazardous materials transportation and emergency response programs
This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).
[Lined up on the observation deck]
Photograph of a group of people on what appears to be an observation deck at an airport. Two individuals wave at the cameraman.
Environmental assessment of the thermal neutron activation explosive detection system for concourse use at US airports
This document is an environmental assessment of a system designed to detect the presence of explosives in checked airline baggage or cargo. The system is meant to be installed at the concourse or lobby ticketing areas of US commercial airports and uses a sealed radioactive source of californium-252 to irradiate baggage items. The major impact of the use of this system arises from direct exposure of the public to scattered or leakage radiation from the source and to induced radioactivity in baggage items. Under normal operation and the most likely accident scenarios, the environmental impacts that would be created by the proposed licensing action would not be significant. 44 refs., 19 figs., 18 tabs.
Security training symposium: Meeting the challenge: Firearms and explosives recognition and detection
These conference proceedings have been prepared in support of the US Nuclear Regulatory Commission's Security Training Symposium on Meeting the Challenge -- Firearms and Explosives Recognition and Detection,'' November 28 through 30, 1989, in Bethesda, Maryland. This document contains the edited transcripts of the guest speakers. It also contains some of the speakers' formal papers that were distributed and some of the slides that were shown at the symposium (Appendix A).
[News Script: Airport construction progress]
Script from the WBAP-TV/NBC station in Fort Worth, Texas, relating a news story.
The systems approach to airport security: The FAA (Federal Aviation Administration)/BWI (Baltimore-Washington International) Airport demonstration project
Sandia National Laboratories has been involved in designing, installing and evaluating security systems for various applications during the past 15 years. A systems approach to security that evolved from this experience was applied to aviation security for the Federal Aviation Administration. A general systems study of aviation security in the United States was concluded in 1987. One result of the study was a recommendation that an enhanced security system concept designed to meet specified objectives be demonstrated at an operational airport. Baltimore-Washington International Airport was selected as the site for the demonstration project which began in 1988 and will be completed in 1992. This article introduced the systems approach to airport security and discussed its application at Baltimore-Washington International Airport. Examples of design features that could be included in an enhanced security concept also were presented, including details of the proposed Ramps Area Intrusion Detection System (RAIDS).
[News Clip: A**A troubles]
B-roll video footage from the KXAS-TV/NBC station in Fort Worth, Texas, to accompany a news story.
Prototype explosives detection system based on nuclear resonance absorption in nitrogen
A-prototype explosives detection system that was developed for experimental evaluation of a nuclear resonance absorption techniques is described. The major subsystems are a proton accelerator and beam transport, high-temperature proton target, an airline-luggage tomographic inspection station, and an image-processing/detection- alarm subsystem. The detection system performance, based on a limited experimental test, is reported.
[News Clip: Airports]
B-roll video footage from the KXAS-TV/NBC station in Fort Worth, Texas, to accompany a news story.
[News Clip: Overbooking]
Video footage from the KXAS-TV/NBC station in Fort Worth, Texas, to accompany a news story.
[News Clip: Air fares]
Video footage from the KXAS-TV/NBC station in Fort Worth, Texas, to accompany a news story.
The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen
The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.
Ultra wide band millimeter wave holographic ``3-D`` imaging of concealed targets on mannequins
Ultra wide band (chirp frequency) millimeter wave ``3-D`` holography is a unique technique for imaging concealed targets on human subjects with extremely high lateral and depth resolution. Recent ``3-D`` holographic images of full size mannequins with concealed weapons illustrate the efficacy of this technique for airport security. A chirp frequency (24 GHz to 40 GHz) holographic system was used to construct extremely high resolution images (optical quality) using polyrod antenna in a bi-static configuration using an x-y scanner. Millimeter wave chirp frequency holography can be simply described as a multi-frequency detection and imaging technique where the target`s reflected signals are decomposed into discrete frequency holograms and reconstructed into a single composite ``3-D`` image. The implementation of this technology for security at airports, government installations, etc., will require real-time (video rate) data acquisition and computer image reconstruction of large volumetric data sets. This implies rapid scanning techniques or large, complex ``2-D`` arrays and high speed computing for successful commercialization of this technology.
Dallas Love Field: The Wright and Shelby Amendments
The history of the Wright Amendment dates back to the 1960s when the now defunct Civil Aeronautics Board (CAB) proposed the creation of a single regional airport in the Dallas-Fort Worth (DFW) area. This report discusses legislation affecting the Wright/Shelby restrictions that have been introduced in the 109th Congress.
Environmental Impacts of Airport Operations, Maintenance, and Expansion
This report provides information about the Environmental Impacts of Airport Operations, Maintenance, and Expansion and in order to address these concerns, airports may be required to implement projects that would minimize the environmental impact.
Simulation to assess the efficacy of US airport entry scrreening of passengers for pandemic influenza
We present our methodology and stochastic discrete-event simulation developed to model the screening of passengers for pandemic influenza at the US port-of-entry airports. Our model uniquely combines epidemiology modelling, evolving infected states and conditions of passengers over time, and operational considerations of screening in a single simulation. The simulation begins with international aircraft arrivals to the US. Passengers are then randomly assigned to one of three states -- not infected, infected with pandemic influenza and infected with other respiratory illness. Passengers then pass through various screening layers (i.e. pre-departure screening, en route screening, primary screening and secondary screening) and ultimately exit the system. We track the status of each passenger over time, with a special emphasis on false negatives (i.e. passengers infected with pandemic influenza, but are not identified as such) as these passengers pose a significant threat as they could unknowingly spread the pandemic influenza virus throughout our nation.
Total Sky Imager Model 880 Status and Testing Results
The Total Sky Imager (TSI) is manufactured by Yankee Environmental Systems (YES) Incorporated, based in Turner Falls, Massachusetts. (For more information about YES, see http://www.yesinc.com/.) The TSI is a commercialized version of the Hemispheric Sky Imager prototype (Long et al. 1998). YES has now produced a more sophisticated (compared to the original model 440) model 880 of the TSI (see Figure 1). The first YES TSI 880 was deployed at the Blackwell Tonkawa Airport (BTA) as part of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program 2000 Cloud intensive operational period (IOP). This TSI 880 collected data from March 2, 2000 through April 6, 2000. This report gives an assessment of the TSI based on the BTA and Southern Great Plane (SGP) Central Facility (CF) data collected to date.
FOILFEST :community enabled security.
The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological tunnels of sensors (the tunnels of truth), (5) curved benches with blast proof walls or backs, (6) making it easy for the public …
Science and Technology Review December 2006
This month's issue has the following articles: (1) Livermore's Biosecurity Research Directly Benefits Public Health--Commentary by Raymond J. Juzaitis; (2) Diagnosing Flu Fast--Livermore's FluIDx device can diagnose flu and four other respiratory viruses in just two hours; (3) An Action Plan to Reopen a Contaminated Airport--New planning tools and faster sample analysis methods will hasten restoration of a major airport to full use following a bioterrorist attack; (4) Early Detection of Bone Disease--A Livermore technique detects small changes in skeletal calcium balance that may signal bone disease; and (5) Taking a Gander with Gamma Rays--Gamma rays may be the next source for looking deep inside the atom.
Hot Corrosion at Air-Ports in Kraft Recovery Boilers
Hot corrosion can occur on the cold-side of airports in Kraft recovery boilers. The primary corrosion mechanism involves the migration of sodium hydroxide and potassium hydroxide vapors through leaks in the furnace wall at the airports and their subsequent condensation. It has been reported that stainless steel is attacked much faster than carbon steel in composite tubes, and that carbon steel tubing, when used with a low-chromium refractory, does not exhibit this type of corrosion. For hot corrosion fluxing of metal oxides, either acidic or basic fluxing takes place, with a solubility minimum at the basicity of transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.
Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results
This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.
Draft Guidance: Response, Restoration, and Recovery Checklist for Biologically Contaminated Facilities
The Checklist for Facility Response, Restoration, and Recovery presented in this document is principally focused on the Consequence Management Phase of a biothreat agent (i.e., Bacillus anthracis) release at a large facility, such as an airport or subway. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, the personnel responsible for managing biological response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a Unified Command (UC) in the event of a biological warfare agent attack. A UC is used when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or an UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase, the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase shifts to the Consequence Management Phase, the work of characterization, decontamination, and facility clearance begins. There will likely be a coincident transition in organizational structure as well, and new restoration-focused groups, units, and personnel will be added as restoration needs are anticipated. Depending on the specific facility and type of incident, the responsible individual (Incident Commander or Unified Commander) within the UC during the Consequence Management Phase could be the …
Advanced digital detectors for neutron imaging.
Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.
Guidelines to improve airport preparedness against chemical and biological terrorism.
Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world.
Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania
Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.
AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA
In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.
American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 - Control Tower and Support Building, Las Vegas, NV
This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be built in Las Vegas, Nevada by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.
ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA
This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.
Contam airflow models of three large buildings: Model descriptions and validation
Airflow and pollutant transport models are useful for several reasons, including protection from or response to biological terrorism. In recent years they have been used for deciding how many biological agent samplers are needed in a given building to detect the release of an agent; to figure out where those samplers should be located; to predict the number of people at risk in the event of a release of a given size and location; to devise response strategies in the event of a release; to determine optimal trade-offs between sampler characteristics (such as detection limit and response time); and so on. For some of these purposes it is necessary to model a specific building of interest: if you are trying to determine optimal sampling locations, you must have a model of your building and not some different building. But for many purposes generic or 'prototypical' building models would suffice. For example, for determining trade-offs between sampler characteristics, results from one building will carry over other, similar buildings. Prototypical building models are also useful for comparing or testing different algorithms or computational pproaches: different researchers can use the same models, thus allowing direct comparison of results in a way that is not otherwise possible. This document discusses prototypical building models developed by the Airflow and Pollutant Transport Group at Lawrence Berkeley National Laboratory. The models are implemented in the Contam v2.4c modeling program, available from the National Institutes for Standards and Technology. We present Contam airflow models of three virtual buildings: a convention center, an airport terminal, and a multi-story office building. All of the models are based to some extent on specific real buildings. Our goal is to produce models that are realistic, in terms of approximate magnitudes, directions, and speeds of airflow and pollutant transport. The three models vary …
Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania
In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.
American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building, Reno, Nevada
Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted an energy audit on the Federal Aviation Administration (FAA) control tower and base building in Reno, Nevada. This report presents the findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) and completed a site visit. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.
American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building Oakland, CA
This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be build at Oakland, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.
COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY
Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and …
St. Louis FUSRAP-A Strategy for Success
In October 1997, Congress transferred the Formerly Utilized Sites Remedial Action Program (FUSRAP) from the Department of Energy (DOE) to the United States Army Corps of Engineers (USACE). FUSRAP addresses contamination generated by activities of the Manhattan Engineering District and the Atomic Energy Commission during the 1940's and 50's in support of the nation's nuclear weapons development program. The USACE Operation Order for FUSRAP gave responsibility for remediation of five sites in Missouri and Illinois to the USACESt. Louis District. The principal site is the St. Louis Airport Site (SLAPS), which involves the removal, transportation, disposal, and restoration of approximately 28 acres and 245,000 bank cubic yards (bcy) of contaminated soils. This paper will focus on the progress and achievements in removal action efficiencies of the SLAPS team. This team consists primarily of the USACE and Stone & Webster, Incorporated.
The state-of-the-art port of entry workshop
The increased demand for freight movements through international ports of entry and the signing of the North American Free Trade Agreement (NAFTA) have increased freight traffic at border ports of entry. The State-of-the-Art Port of Entry Workshop initiated a dialogue among technologists and stakeholders to explore the potential uses of technology at border crossings and to set development priorities. International ports of entry are both information and labor intensive, and there are many promising technologies that could be used to provide timely information and optimize inspection resources. Participants universally held that integration of technologies and operations is critical to improving port services. A series of Next Steps was developed to address stakeholder issues and national priorities, such as the National Transportation Policy and National Drug Policy. This report documents the views of the various stakeholders and technologists present at the workshop and outlines future directions of study.
Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada
This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 2000a).
Corrective Action Decision Document for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada, Rev. 0
This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons, and CAU 320, Area 22 Desert Rock Airport Strainer Box, under the Federal Facility Agreement and Consent Order. Referred to as CAU 230/320, both CAUs are located at the Nevada Test Site (NTS) and comprise two Corrective Action Sites (CASs), 22-03-01 (Sewage Lagoons) and 22-99-01 (Strainer Box). The Area 22 Sewage Lagoons site also includes a buried Imhoff Tank, sludge bed, and associated sewer piping. A September 1999 corrective action investigation identified the only contaminant of concern above preliminary action levels at this CAU (i.e., total petroleum hydrocarbons as diesel-range organics). During this same investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to subsurface debris and contaminated soil. Based on these CAOs, a review of existing data, future use, and current operations in Area 22 of the NTS, three CAAs were developed for consideration: Alternative 1 - No Further Action, Alternative 2 - Closure in Place with Administrative Controls, and Alternative 3 - Excavation and Removal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Alternative 3 was chosen on technical merit as the preferred alternative for CAU 230/320. This alternative was judged to meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the buried debris and contaminated soils at both of the CASs within Area 22.
[News Clip: DFW No Love]
Video footage from the KXAS-TV/NBC station in Fort Worth, Texas, to accompany a news story about Dallas Fort Worth Airport employees going to Dallas Love Field Airport to encourage Southwest Airlines to begin service at DFW Airport. This footage includes a representative and an employee of DFW Airport.
Back to Top of Screen