Search Results

LES Software for the Design of Low Emission Combustion Systems for Vision 21 Plants, Quarterly Report: July - September 2001
Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this fourth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was further tested in the LES code. A more efficient PK binary tree data structure is being developed and implemented to replace the original BSP-tree structure. Implementation of the Linear Eddy Model (LEM) for subgrid chemistry has also started. In addition, Georgia Tech has shown that a chemical neural net (1-step chemistry) trained at certain turbulent conditions can be used at different turbulent conditions without expensive chemical kinetic integrations. Initial evaluations of the code accuracy have also been carried out. The evaluations cases included the unstable DOE-NETL combustor and a lid-driven cavity. Next quarter, the ISAT algorithm for efficient chemistry will be tested for the unstable DOE-NETL combustor. Initial flame calculations, with the LEM subgrid chemistry model are planned. Also, demonstration of the neural net approach, for chemical kinetics speed-up, should be demonstrated for more advanced chemistry (8-species and 19-species mechanisms).
Hanford Site Environmental Report for Calendar Year 2001
This report summarizes environmental information for the Hanford Site in Washington State for the calendar year 2001.
NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: July-September 2001
This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.
Early Entrance Co-Production Plant - Decentralized Gasification Cogeneration Transportation Fuels and Steam From Available Feedstocks, Quarterly Report: October - December 2001
Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.
NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: April-June 2001
This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. A Rich Reagent Injection (RRI) design has been developed for a cyclone fired utility boiler in which a field test of RRI will be performed later this year. Initial evaluations of RRI for PC fired boilers have been performed. Calibration tests have been developed for a corrosion probe to monitor waterwall wastage. Preliminary tests have been performed for a soot model within a boiler simulation program. Shakedown tests have been completed for test equipment and procedures that will be used to measure soot generation in a pilot scale test furnace. In addition, an initial set of controlled experiments for ammonia adsorption onto fly ash in the presence of sulfur have been performed that indicates the sulfur does enhance ammonia uptake.
Advanced Cuttings Transport Study Quarterly Technical Report: October-December 2001
This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.
CO2 Selective Ceramic Membrane for Water-Gas-Shift Reaction With Concomitant Recovery of CO2, Quarterly Report: October - December 2001
To become a viable CO{sub 2} transport membrane, a reversible interaction between CO{sub 2} and the membrane material at the operating condition is a must. In the past quarter, we have conducted a comprehensive reversibility study using TGA and MS at {approx}200 C for both adsorption and desorption. This quarterly report summarizes the results. Evidently, CO{sub 2} can be reversible adsorbed and desorbed on the hydrotalcite surface via a pressure swing operation (i.e., between 1 bar and vacuum). About 2wt% working capacity was obtained. Even in the presence of water, the reversibility still holds. In the next quarter, we will focus on the reversibility under other operating conditions and the kinetic aspect of the reversibility study.
Recovery and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Report: April-June 2001
Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.
Acoustical Imaging and Mechanical Properties of Soft Rock and Marine Sediments Progress Report: January-March 2001
The oil and gas industry has encountered significant problems in the production of oil and gas from weak rocks (such as chalks and limestones) and from unconsolidated sand formations. Problems include subsidence, compaction, sand production, and catastrophic shallow water sand flows during deep water drilling. Together these cost the petroleum industry hundreds of millions of dollars annually. The goals of this first quarterly report is to document the progress on the project to provide data on the acoustic imaging and mechanical properties of soft rock and marine sediments. The project is intended to determine the geophysical (acoustic velocities) rock properties of weak, poorly cemented rocks and unconsolidated sands. In some cases these weak formations can create problems for reservoir engineers. For example, it cost Phillips Petroleum 1 billion dollars to repair of offshore production facilities damaged during the unexpected subsidence and compaction of the Ekofisk Field in the North Sea (Sulak 1991). Another example is the problem of shallow water flows (SWF) occurring in sands just below the seafloor encountered during deep water drilling operations. In these cases the unconsolidated sands uncontrollably flow up around the annulus of the borehole resulting in loss of the drill casing. The $150 million dollar loss of the Ursa development project in the U.S. Gulf Coast resulted from an uncontrolled SWF (Furlow 1998a,b; 1999a,b). The first three tasks outlined in the work plan are: (1) obtain rock samples, (2) construct new acoustic platens, (3) calibrate and test the equipment. These have been completed as scheduled. Rock Mechanics Institute researchers at the University of Oklahoma have obtained eight different types of samples for the experimental program. These include: (a) Danian Chalk, (b) Cordoba Cream Limestone, (c) Indiana Limestone, (d) Ekofisk Chalk, (e) Oil Creek Sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river …
Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir. Quarterly Progress Report: October 1--December 31, 2001
The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.
Advanced Stripper Gas Produced Water Remediation, Quarterly Technical Report: October-December 2001
Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (Stripper Gas Water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal …
Advanced Stripper Gas Produced Water Remediation, Quarterly Technical Report: July-September 2001
Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (Stripper Gas Water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal …
Acoustical Imaging and Mechanical Properties of Soft Rock and Marine Sediments Progress Report: October-December 2001
During this phase of the project the research team concentrated on acquisition of acoustic emission data from the high porosity rock samples. The initial experiments indicated that the acoustic emission activity from high porosity Danian chalk were of a very low amplitude. Even though the sample underwent yielding and significant plastic deformation the sample did not generate significant AE activity. This was somewhat surprising. These initial results call into question the validity of attempting to locate AE activity in this weak rock type. As a result the testing program was slightly altered to include measuring the acoustic emission activity from many of the rock types listed in the research program. The preliminary experimental results indicate that AE activity in the sandstones is much higher than in the carbonate rocks (i.e., the chalks and limestones). This observation may be particularly important for planning microseismic imaging of reservoir rocks in the field environment. The preliminary results suggest that microseismic imaging of reservoir rock from acoustic emission activity generated from matrix deformation (during compaction and subsidence) would be extremely difficult to accomplish.
Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir. Quarterly Progress Report: July 1--September 30, 2001
The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.
An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery From the Complex Monterey Reservoir of South Ellwood Field, Offshore California, Quarterly Report: October - December 2001
Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the …
Recovery and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Report: January-March 2001
Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2001 in which Aquasearch tested 24 different species of microalgae for growth at three different temperatures. Eleven species were analyzed for the presence of high-value pigments. Most of the algae analyzed were good sources of industrially valuable pigments. Analysis of the methods for introducing and dissolving CO{sub 2} in the commercial bioreactor was begun this quarter.
Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir. Quarterly Progress Report: January 1--March 31, 2001
The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.
Alternative Fuels and Chemicals From Synthesis Gas Technical Progress Report: Number 26
The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.
Borehole Data Package for Calendar Year 2001 RCRA Wells at Single-Shell Tank Waste Management Area U
This document provides information on the construction of three new RCRA wells at Waste Management Area U in September 2001.
Borehole Data Package for Calendar Year 2001 RCRA Wells at Single-Shell Tank Waste Management Area S-SX
This document provides information on the construction of two new RCRA wells (299-W22-84 and 299-W22-85) at Waste Management Area S-SX.
Borehole Data Package for Calendar Year 2001 RCRA Well Installation at Single-Shell Tank Waste Management Area T
This report details the installation of well 299-W10-28 installed as a RCRA groundwater monitoring well at Waste Management Area T in October 2001.
Hanford Site Near Facility Environmental Monitoring Data Report for Calendar Year 2001
Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant (PFP), Canister Storage Building (CSB), and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction Plant (PUREX); and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions. The
Hanford Site Environmental Surveillance Data Report for Calendar Year 2001
This document contains the tables of data on which PNNL's environmental surveillance summary information is based. This data report contains the actual raw data used to create the tables and summaries in the Hanford Site Environmental Report for Calendar Year 2001.
Acoustical Imaging and Mechanical Properties of Soft Rock and Marine Sediments Progress Report: April-June 2001
Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team …
NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: October-December 2001
This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.
Church & Synagogue Libraries, Volume 34, Number 5, March/April 2001
Bimonthly publication of the Church and Synagogue Library Association, containing news and events related to the organization and its members, reviews of books and other materials, and stories of interest to the management of congregational libraries.
Church & Synagogue Libraries, Volume 34, Number 6, May/June 2001
Bimonthly publication of the Church and Synagogue Library Association, containing news and events related to the organization and its members, reviews of books and other materials, and stories of interest to the management of congregational libraries.
Church & Synagogue Libraries, Volume 34, Number 4, January/February 2001
Bimonthly publication of the Church and Synagogue Library Association, containing news and events related to the organization and its members, reviews of books and other materials, and stories of interest to the management of congregational libraries.
NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: January-March 2001
No Description Available.
AS 01-7
No Description Available.
AQ 01-5
This painting is mostly black with some vertical white scrapes.
AU 01-9
This painting is predominately white with pink and black vertical scrapes.
AV 01-10
This oil painting is predominately pink with vertical scrapes of black and white.
AX 01-12
This abstract painting is predominately white with black, gray and green vertical marks interrupted by some horizontal implied lines.
AZ 01-14
This abstract painting is predominately white with green, pink and gray vertical strokes broken by an implied horizontal line.
BA 01-15
This abstract painting consists of pink and gray vertical strokes with some green and black smaller vertical strokes.
Number 68
This abstract painting is predominately black with some wavy vertical strokes of green, pink, and white.
Woman Brushing Her Hair III
This painting depicts a woman brushing her long hair and looking into a silver hand-held mirror.
Miniature Book Society Newsletter, Number 50, April 2001
Articles about the Miniature Book Society, its members, and various happenings in the world of miniature books.
Miniature Book Society Newsletter, Number 49, January 2001
Articles about the Miniature Book Society, its members, and various happenings in the world of miniature books.
Miniature Book Society Newsletter, Number 51, July 2001
Articles about the Miniature Book Society, its members, and various happenings in the world of miniature books.
Miniature Book News, Number 108, March 2001
Articles about miniature books, collectors, publishers, trends in the world of miniature books, exhibitions, and other topics related to the field.
Miniature Book Society Newsletter, Number 52, October 2001
Articles about the Miniature Book Society, its members, and various happenings in the world of miniature books.
Appropriations for FY2001: Energy and Water Development
This report discusses the Energy and Water Development appropriations bill, which includes funding for civil projects of the Army Corps of Engineers, the Department of the Interior's Bureau of Reclamation (BuRec), most of the Department of Energy (DOE), and a number of independent agencies.
Across-the-Board Tax Cuts: Economic Issues
This report examines economic issues relating to across-the-board tax cuts, focusing primarily on distributional issues. The report is divided into four sections. The first section provides a general overview of the tax system. The next discusses recent proposals relating to across-the-board tax cuts. The third section discusses methods of evaluating alternative types of across-the-board tax cuts. The final section briefly discusses issues of efficiency, simplicity, and stabilization policy.
Appropriations for FY2001: Legislative Branch
Appropriations are one part of a complex federal budget process that includes budget resolutions, appropriations (regular, supplemental, and continuing) bills, rescissions, and budget reconciliation bills. This report is a guide to one of the 13 regular appropriations bills that Congress passes each year. It is designed to supplement the information provided by the House and Senate Appropriations Subcommittees on Legislative Branch Appropriations.
Agricultural Export and Food Aid Programs
This report discusses projected agricultural imports and exports for FY2001, as well as legislation that deals with federal programs in support of agricultural exports and federal aid dedicated to farms and agricultural reform.
Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001
Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.
Appropriations for FY2001: Treasury, Postal Service, Executive Office of the President, and General Government
Appropriations are one part of a complex federal budget process that includes budget resolutions, appropriations (regular, supplemental, and continuing) bills, rescissions, and budget reconciliation bills. This report is a guide to one of the 13 regular appropriations bills that Congress passes each year. It is designed to supplement the information provided by the House and Senate Appropriations Subcommittees on Treasury, Postal Service, and General Government.
Appropriations for FY2001: Labor, Health and Human Services, and Education
Appropriations are one part of a complex federal budget process that includes budget resolutions, appropriations (regular, supplemental, and continuing) bills, rescissions, and budget reconciliation bills. This report is a guide to one of the 13 regular appropriations bills that Congress passes each year. It is designed to supplement the information provided by the House and Senate Appropriations Subcommittees on Labor, Health and Human Services, and Education.
Back to Top of Screen