Search Results

Advanced search parameters have been applied.
open access

Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass

Description: Metallic glasses possess attractive properties, such as high strength, good corrosion resistance, and superior soft magnetic performance. They also serve as precursors for synthesizing nanocrystalline materials. In addition, a new class of composites having crystalline phases embedded in amorphous matrix is evolving based on selective crystallization of metallic glasses. Therefore, crystallization of metallic glasses and its effects on properties has been a subject of interest. Previous investi… more
Date: December 2017
Creator: Joshi, Sameehan Shrikant
Partner: UNT Libraries
open access

Modeling of High Strain Rate Compression of Austenitic Shape Memory Alloys

Description: Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, therefore, are excellent candidates for structural components where impact loading is expected. Compared to the large amount of research on the shape memory effect and/or pseudoelasticity of polycrystalline SMAs under quasi-static loading conditions, studies on dynamic loading are limited. Experimental research shows an apparent difference between the quasi-static and high strain rate deformation of SMAs. Research… more
Date: December 2017
Creator: Yu, Hao
Partner: UNT Libraries
open access

Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing

Description: This article demonstrates the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing of titanium based in situ ductile-phase reinforced metallic glass composite.
Date: June 24, 2014
Creator: Singh Arora, Harpreet; Mridha, Sanghita; Singh Grewal, Harpeet; Singh, Harpreet; Hofmann, Douglas C. & Mukherjee, Sundeep
Partner: UNT College of Engineering
open access

In Vitro Behavior of AZ31B Mg-Hydroxyapatite Metallic Matrix Composite Surface Fabricated via Friction Stir Processing

Description: Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-b… more
Date: August 2016
Creator: Ho, Yee Hsien
Partner: UNT Libraries
open access

Sliding Friction and Wear Behavior of High Entropy Alloys at Room and Elevated Temperatures

Description: Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phase… more
Date: December 2016
Creator: Kadhim, Dheyaa
Partner: UNT Libraries
open access

Developing Precipitation Hardenable High Entropy Alloys

Description: High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic … more
Date: August 2017
Creator: Gwalani, Bharat
Partner: UNT Libraries
open access

Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys

Description: NiTi-based shape memory alloys (SMAs) offer a good combination of high-strength, ductility, corrosion resistance, and biocompatibility that has served them well and attracted the attention of many researchers and industries. The alloys unique thermo-mechanical ability to recover their initial shape after relatively large deformations by heating or upon unloading due to a characteristic reversible phase transformation makes them useful as damping devices, solid state actuators, couplings, etc. H… more
Date: May 2018
Creator: Carl, Matthew A
Partner: UNT Libraries
open access

Laser Surface Modification of AZ31B Mg Alloy Bio-Implant Material

Description: Magnesium and its alloys are considered as the potential biomaterials due to their biocompatibility and biodegradable characteristics but suffer from poor corrosion performance. Various surface modification techniques are employed to improve their corrosion resistance. In present case, laser surface melting was carried out on AZ31B Mg alloy with various laser energy densities using a continuous wave ytterbium laser. Effect of laser treatment on phase and microstructure evolution was evaluated b… more
Date: August 2018
Creator: Wu, Tso-chang
Partner: UNT Libraries
open access

Anisotropic Nature of Radially Strained Metal Tubes

Description: Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an … more
Date: December 2015
Creator: Strickland, Julie N.
Partner: UNT Libraries
open access

Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys

Description: The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differe… more
Date: December 2015
Creator: Komarasamy, Mageshwari
Partner: UNT Libraries
open access

Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and Conversion

Description: In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of metal coordinated frameworks for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Gibb's free energy, overpotential, charge transfer and ligands effect are evaluated. The charge transfer analysis shows the positive charges on the metal coordinated frameworks play an essential role in improving the electrochemical properties of the metal … more
Date: December 2018
Creator: Lin, Chun-Yu
Partner: UNT Libraries
open access

High Temperature Water as an Etch and Clean for SiO2 and Si3N4

Description: An environmentally friendly, and contamination free process for etching and cleaning semiconductors is critical to future of the IC industry. Under the right conditions, water has the ability to meet these requirements. Water becomes more reactive as a function of temperature in part because the number of hydronium and hydroxyl ions increase. As water approaches its boiling point, the concentration of these species increases over seven times their concentrations at room temperature. At 150 °C, … more
Date: December 2018
Creator: Barclay, Joshua David
Partner: UNT Libraries
open access

Integrated Computational and Experimental Approach to Control Physical Texture During Laser Machining of Structural Ceramics

Description: The high energy lasers are emerging as an innovative material processing tool to effectively fabricate complex shapes on the hard and brittle structural ceramics, which previously had been near impossible to be machined effectively using various conventional machining techniques. In addition, the in-situ measurement of the thermo-physical properties in the severe laser machining conditions (high temperature, short time duration, and small interaction volume) is an extremely difficult task. As a… more
Date: December 2013
Creator: Vora, Hitesh D.
Partner: UNT Libraries

Structural Design and Its Impact on Thermal Efficiency and Corrosion of All-Aluminum Microchannel Heat Exchangers

Description: In this study, high-fidelity conjugate heat transfer simulations are used to model a micro-channel heat exchanger (MCHE) in a crossflow to study its thermal-hydraulic performance. This study considers three different microchannels (internal flow) geometries (circular, triangular, and square) with louver-shaped fins. The local flow field showed a strong coupling between the microchannel flow, solid domain, and crossflow. The flow separation and wake regions formed near MCHE resulted in a large v… more
Date: July 2023
Creator: Ahmed, Hossain
Partner: UNT Libraries
open access

Complex Concentrated Alloys (CCAs)—Current Understanding and Future Opportunities

Description: Article providing an overview of the special issue titled Complex Concentrated Alloys (CCAs) - Current Understanding and Future Opportunities. The published papers in this special issue aim to report on the current state of research in complex concentrated alloys (CCAs) as well as compelling future opportunities in wide ranging applications.
Date: September 15, 2020
Creator: Mukherjee, Sundeep
Partner: UNT College of Engineering
open access

Corrosion Behavior of Selectively Laser Melted CoCrFeMnNi High Entropy Alloy

Description: The article focuses on a study that widens the toolbox to manufacture HEAs with exceptional corrosion resistance by additive manufacturing. CoCrFeMnNi high entropy alloys (HEAs) were additively manufactured (AM) by laser powder bed fusion and their corrosion resistance in 3.5 wt% NaCl solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests. A systematic study of AM CoCrFeMnNi HEAs’ porosity under a wide range of laser processing parameters was condu… more
Date: September 23, 2019
Creator: Ren, Jie; Mahajan, Chaitanya; Liu, Liang; Follette, David; Chen, Wen & Mukherjee, Sundeep
Partner: UNT College of Engineering

In-situ Electrochemical Surface Engineering in Additively Manufactured CoCrMo for Enhanced Biocompatibility

Description: Laser-based additive manufacturing is inherently associated with extreme, unprecedented, and rapid thermokinetics which impact the microstructural evolution in a built component. Such a unique, near to non-equilibrium microstructure/phase evolution in laser additively manufactured metallic components impact their properties in engineering application. In light of this, the present work investigates the unique microstructural traits as a result of process induced spatial and temporal variation i… more
This item is restricted from view until June 1, 2024.
Date: May 2023
Creator: Mazumder, Sangram
Partner: UNT Libraries

Small Scale Fracture Mechanisms in Alloys with Varying Microstructural Complexity

Description: Small-scale fracture behavior of four model alloy systems were investigated in the order of increasing microstructural complexity, namely: (i) a Ni-based Bulk Metallic Glass (Ni-BMG) with an isotropic amorphous microstructure; (ii) a single-phase high entropy alloy, HfTaTiVZr, with body centered cubic (BCC) microstructure; (iii) a dual-phase high entropy alloy, AlCoCrFeNi2.1, with eutectic FCC (L12) -BCC (B2) microstructure; and (iv) a Medium-Mn steel with hierarchical microstructure. The micro… more
This item is restricted from view until August 1, 2025.
Date: July 2023
Creator: Jha, Shristy
Partner: UNT Libraries
Back to Top of Screen