You limited your search to:

  Partner: UNT Libraries Government Documents Department
A 3.3 MJ, Rb{sup +1} Driver Design Based on an Integrated Systems Analysis

A 3.3 MJ, Rb{sup +1} Driver Design Based on an Integrated Systems Analysis

Date: September 15, 2000
Creator: Meier, W. R.; Barnard, J. J. & Bangerter, R. O.
Description: A computer model for systems analysis of heavy ion drivers has been developed and used to evaluate driver designs for inertial fusion energy (IFE). The present work examines a driver for a close-coupled target design that requires less total beam energy but also smaller beam spots sizes than previous target designs. Design parameters and a cost estimate for a 160 beam, 3.3 MJ driver using rubidium ions (A = 85) are reported, and the sensitivity of the results to variations in selected design parameters is given.
Contributing Partner: UNT Libraries Government Documents Department
The 3.8% Medicare Contribution Tax on Unearned Income, Including Real Estate Transactions

The 3.8% Medicare Contribution Tax on Unearned Income, Including Real Estate Transactions

Date: May 18, 2012
Creator: unknown
Description: None
Contributing Partner: UNT Libraries Government Documents Department
A 3-axis force balanced accelerometer using a single proof-mass

A 3-axis force balanced accelerometer using a single proof-mass

Date: April 1997
Creator: Lemkin, M.A.; Boser, B.E.; Auslander, D. & Smith, J.
Description: This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.
Contributing Partner: UNT Libraries Government Documents Department
3-D Cavern Enlargement Analyses

3-D Cavern Enlargement Analyses

Date: March 1, 2002
Creator: EHGARTNER, BRIAN L. & SOBOLIK, STEVEN R.
Description: Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis ...
Contributing Partner: UNT Libraries Government Documents Department
3-D computer simulations of EM field sin the APS vacuum chamber. Part 2: Time-domain analysis

3-D computer simulations of EM field sin the APS vacuum chamber. Part 2: Time-domain analysis

Date: January 20, 1989
Creator: Chou, W.
Description: Our simulations suggest that the strong peak around 4 GHz in the narrow gap observed in the measurements is generated by TE modes. Therefore, one should not worry about this peak insofar as the coupling impedance is concerned. On the other hand, some discrepancies between our simulations and the measurements are noticed and remain to be resolved.
Contributing Partner: UNT Libraries Government Documents Department
3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis

3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis

Date: September 4, 1990
Creator: Chou, W. & Bridges, J.
Description: The vacuum chamber proposed for the storage ring of the 7-GeV Advanced Photon Source (APS) basically consists of two parts: the beam chamber and the antechamber, connected to each other by a narrow gap. A sector of 1-meter-long chamber with dosed end plates, to which are attached the 1-inch-diameter beampipes centered at the beam chamber, has been built for experimental purposes. The 3-D code MAFIA has been used to simulate the frequency-domain behaviors of EM fields in this setup. The results are summarized in this note and are compared with that previously obtained from 2-D simulations and that from network analyzer measurements. They are in general agreement. A parallel analysis in the time-domain is reported in a separate note. The method of our simulations can be briefly described as follows. The 1-inch diameter beampipes are terminated by conducting walls at a length of 2 cm. The whole geometry can thus be considered as a cavity. The lowest RF modes of this geometry are computed using MAFIA. The eigenfrequencies of these modes are a direct output of the eigenvalue solver E3, whereas the type of each mode is determined by employing the postprocessor P3. The mesh sizes are chosen such that ...
Contributing Partner: UNT Libraries Government Documents Department
3-D DETERMINISTIC TRANSPORT METHODS RESEARCH AT LANL UNDER ASCI

3-D DETERMINISTIC TRANSPORT METHODS RESEARCH AT LANL UNDER ASCI

Date: January 1, 2000
Creator: Morel, J.
Description: No abstract prepared.
Contributing Partner: UNT Libraries Government Documents Department
3-D elastic wave scattering by a layer containing vertical periodic fractures

3-D elastic wave scattering by a layer containing vertical periodic fractures

Date: April 30, 2002
Creator: Nakagawa, Seiji; Nihei, Kurt T.; Myer, Larry R. & Majer, Ernest L.
Description: No abstract prepared.
Contributing Partner: UNT Libraries Government Documents Department
3-D electromagnetic modeling of wakefields in accelerator components

3-D electromagnetic modeling of wakefields in accelerator components

Date: September 18, 1996
Creator: Poole, B.R.; Caporaso, G.J.; Ng, Wang C.; Shang, C.C. & Steich, D.
Description: We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.
Contributing Partner: UNT Libraries Government Documents Department
3-D Experimental Fracture Analysis at High Temperature

3-D Experimental Fracture Analysis at High Temperature

Date: September 14, 2001
Creator: Jackson, John H. & Kobayashi, Albert S.
Description: T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.
Contributing Partner: UNT Libraries Government Documents Department