This system will be undergoing maintenance Tuesday, December 6 from 9AM to 12PM CST.

  You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Decade: 1990-1999
The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

Date: February 1, 1996
Creator: Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.; Reed, R.A.; Shipley, G.; Westbrook, E.M. et al.
Description: Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.
Contributing Partner: UNT Libraries Government Documents Department
A 2.14 ms candidate optical pulsar in SN1987A: Ten years after

A 2.14 ms candidate optical pulsar in SN1987A: Ten years after

Date: September 1, 1997
Creator: Middleditch, J.; Kristian, J.A.; Kunkel, W.E.; Hill, K.M. & Watson, R.D.
Description: We have monitored Supernova 1987A in optical/near-infrared bands from a few weeks following its birth until the present time in order to search for a pulsar remnant. We have found an apparent pattern of emission near the frequency of 467.5 Hz - a 2.14 ms pulsar candidate, first detected in data taken on the remnant at the Las Campanas Observatory (LCO) 2.5-m Dupont telescope during 14-16 Feb. 1992 UT. We detected further signals near the 2.14 ms period on numerous occasions over the next four years in data taken with a variety of telescopes, data systems and detectors, at a number of ground- and space-based observatories. The sequence of detections of this signal from Feb. `92 through August `93, prior to its apparent subsequent fading, is highly improbable (< 10{sup -10} for any noise source). We also find evidence for modulation of the 2.14 ms period with a {approx}1,000 s period which, when taken with the high spindown of the source (2-3 x 10{sup -10} Hz/s), is consistent with precession and spindown via gravitational radiation of a neutron star with a non- axisymmetric oblateness of {approx}10{sup -6}, and an implied gravitational luminosity exceeding that of the Crab Nebula pulsar by ...
Contributing Partner: UNT Libraries Government Documents Department
2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks

2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks

Date: November 15, 1998
Creator: Mattor, N.; Porter, G. D.; Rognlien, T. D. & Ryutov, D. D.
Description: A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the ...
Contributing Partner: UNT Libraries Government Documents Department
2-D Finite Element Cable and Box IEMP Analysis

2-D Finite Element Cable and Box IEMP Analysis

Date: December 17, 1998
Creator: Scivner, G.J. & Turner, C.D.
Description: A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Contributing Partner: UNT Libraries Government Documents Department
2-D image segmentation using minimum spanning trees

2-D image segmentation using minimum spanning trees

Date: September 1995
Creator: Xu, Y. & Uberbacher, E. C.
Description: This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.
Contributing Partner: UNT Libraries Government Documents Department
2-D linear motion system. Innovative technology summary report

2-D linear motion system. Innovative technology summary report

Date: November 1, 1998
Creator: unknown
Description: The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. ...
Contributing Partner: UNT Libraries Government Documents Department
A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors

A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors

Date: June 17, 1999
Creator: Bartel, Timothy J.; Economou, Demetre & Johannes, Justine E.
Description: This paper will focus on the methodology of using a 2D plasma Direct Simulation Monte Carlo technique to simulate the species transport in an inductively coupled, low pressure, chemically reacting plasma system. The pressure in these systems is typically less than 20 mtorr with plasma densities of approximately 10{sup 17} {number_sign}/m{sup 3} and an ionization level of only 0.1%. This low ionization level tightly couples the neutral, ion, and electron chemistries and interactions in a system where the flow is subsonic. We present our strategy and compare simulation results to experimental data for Cl{sub 2} in a Gaseous Electronics Conference (GEC) reference cell modified with an inductive coil.
Contributing Partner: UNT Libraries Government Documents Department
A 2-GHz Rectangular Corrugated Horn

A 2-GHz Rectangular Corrugated Horn

Date: October 1, 1991
Creator: Bersanelli, M.; Bensadoun, M.; De Amici, Giovanni; Limon, M.; Smoot, George F.; Tanaka, S. et al.
Description: We have designed, constructed and tested a large, rectangular horn antenna with a center frequency of 2.0 GHz, corrugated on the E-plane walls, made out of aluminum sheet. A new technique has been developed to solder thin aluminum strips onto the back plane to form the corrugations. The radiation beam pattern shows half-power beamwidths of 12{sup 0} and 14{sup 0} in the H and E planes respectively, and side lobe response below -40 dB at angles greater than 50{sup 0} from horn axis. The measured return loss is less than -20 dB (VSWR &lt; 1.22) between 1.7 and 2.3 GHz; insertion loss is less than 0.15 dB.
Contributing Partner: UNT Libraries Government Documents Department
2 HZ, 30 T SPLIT PULSE WATER COOLED MAGNET FOR NEUTRON SCATTERING EXPERIMENTS (MATERIALS CHARACTERIZATION AND DESIGN OPTIONS)

2 HZ, 30 T SPLIT PULSE WATER COOLED MAGNET FOR NEUTRON SCATTERING EXPERIMENTS (MATERIALS CHARACTERIZATION AND DESIGN OPTIONS)

Date: August 26, 1997
Creator: EYSSA, Y. M.; WALSH, R. P.; MILLER, J. R.; MILLER, G. E.; PERNAMBUCO-WISE, P.; BIRD, M. D. et al.
Description: No abstract prepared.
Contributing Partner: UNT Libraries Government Documents Department
N = 2 string amplitudes

N = 2 string amplitudes

Date: August 1, 1995
Creator: Ooguri, H.
Description: In physics, solvable models have played very important roles. Understanding a simple model in detail teaches us a lot about more complicated models in generic situations. Five years ago, C. Vafa and I found that the closed N = 2 string theory, that is a string theory with the N = 2 local supersymmetry on the worldsheet, is classically equivalent to the self-dual Einstein gravity in four spacetime dimensions. Thus this string theory is solvable at the classical level. More recently, we have examined the N = 2 string partition function for spacial compactifications, and computed it to all order in the string perturbation expansion. The fact that such computation is possible at all suggests that the N = 2 string theory is solvable even quantum mechanically.
Contributing Partner: UNT Libraries Government Documents Department
2 {times} 2 TeV {mu}{sup +}{mu}{sup {minus}} collider: Lattice and accelerator-detector interface study

2 {times} 2 TeV {mu}{sup +}{mu}{sup {minus}} collider: Lattice and accelerator-detector interface study

Date: May 1, 1995
Creator: Gelfand, N.M. & Mokhov, N.V.
Description: The design for a high-luminosity {mu}{sup +}{mu}{sup {minus}} superconducting storage ring is presented based on first-pass calculations. Special attention is paid to two Iowa interaction regions (IR) whose optics are literally interlaced with the collider detectors. Various sources of backgrounds in IR are explored via realistic Monte Carlo simulations. An improved design of the collider lattice in the neighborhood of the interaction points (EP) is determined by the need to reduce significantly background levels in the detectors.
Contributing Partner: UNT Libraries Government Documents Department
A 2 to 4 nm high power FEL on the SLAC linac

A 2 to 4 nm high power FEL on the SLAC linac

Date: September 1, 1992
Creator: Pellegrini, C.; Rosenzweig, J.; Nuhn, H.D.; Pianetta, P.; Tatchyn, R.; Winick, H. et al.
Description: We report the results of preliminary studies of a 2 to 4 nm SASE FEL, using a photoinjector to produce the electron beam, and the SLAC linac to accelerate it to an energy up to 10 GeV. Longitudinal bunch compression is used to increases ten fold the peak current to 2.5 kA, while reducing the bunch length to the subpicosecond range. The saturated output power is in the multi-gigawatt range, producing about 10{sup 14} coherent photons within a bandwidth of about 0.2% rms, in a pulse of several millijoules. At 120Hz repetition rate the average power is about 1 W. The system is optimized for x-ray microscopy in the water window around 2 to 4 nm, and will permit imaging a biological sample in a single subpicosecond pulse.
Contributing Partner: UNT Libraries Government Documents Department
2 x 2 TeV mu(superscript +) mu (superscript) collider

2 x 2 TeV mu(superscript +) mu (superscript) collider

Date: October 1, 1996
Creator: Mokhov, N.V. & Noble, R.J.
Description: The scenarios for high-luminosity 2 x 2 TeV and 250 x 250 GeV {mu}{sup +}{mu}{sup -} colliders are presented. Having a high physics potential, such a machine has specific physics and technical advantages and disadvantages when compared with an e{sup +}e{sup -} collider. Parameters for the candidate designs and the basic components - proton source, pion production and decay channel, cooling, acceleration and collider storage ring - are considered. Attention is paid to the areas mostly affecting the collider performance: targetry, energy spread, superconducting magnet survival, detector backgrounds, polarization, environmental issues. 13 refs., 9 figs., 4 tabs.
Contributing Partner: UNT Libraries Government Documents Department
A 3-axis force balanced accelerometer using a single proof-mass

A 3-axis force balanced accelerometer using a single proof-mass

Date: April 1997
Creator: Lemkin, M.A.; Boser, B.E.; Auslander, D. & Smith, J.
Description: This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.
Contributing Partner: UNT Libraries Government Documents Department
3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis

3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis

Date: September 4, 1990
Creator: Chou, W. & Bridges, J.
Description: The vacuum chamber proposed for the storage ring of the 7-GeV Advanced Photon Source (APS) basically consists of two parts: the beam chamber and the antechamber, connected to each other by a narrow gap. A sector of 1-meter-long chamber with dosed end plates, to which are attached the 1-inch-diameter beampipes centered at the beam chamber, has been built for experimental purposes. The 3-D code MAFIA has been used to simulate the frequency-domain behaviors of EM fields in this setup. The results are summarized in this note and are compared with that previously obtained from 2-D simulations and that from network analyzer measurements. They are in general agreement. A parallel analysis in the time-domain is reported in a separate note. The method of our simulations can be briefly described as follows. The 1-inch diameter beampipes are terminated by conducting walls at a length of 2 cm. The whole geometry can thus be considered as a cavity. The lowest RF modes of this geometry are computed using MAFIA. The eigenfrequencies of these modes are a direct output of the eigenvalue solver E3, whereas the type of each mode is determined by employing the postprocessor P3. The mesh sizes are chosen such that ...
Contributing Partner: UNT Libraries Government Documents Department
3-D electromagnetic modeling of wakefields in accelerator components

3-D electromagnetic modeling of wakefields in accelerator components

Date: September 18, 1996
Creator: Poole, B.R.; Caporaso, G.J.; Ng, Wang C.; Shang, C.C. & Steich, D.
Description: We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.
Contributing Partner: UNT Libraries Government Documents Department
3-D field computation: The near-triumph of commerical codes

3-D field computation: The near-triumph of commerical codes

Date: July 1995
Creator: Turner, L. R.
Description: In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.
Contributing Partner: UNT Libraries Government Documents Department
3-D Finite Element Analyses of the Egan Cavern Field

3-D Finite Element Analyses of the Egan Cavern Field

Date: February 1, 1999
Creator: Klamerus, E.W. & Ehgartner, B.L.
Description: Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were ...
Contributing Partner: UNT Libraries Government Documents Department
3-d finite element model development for biomechanics: a software demonstration

3-d finite element model development for biomechanics: a software demonstration

Date: March 1, 1997
Creator: Hollerbach, K.; Hollister, A.M. & Ashby, E.
Description: Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.
Contributing Partner: UNT Libraries Government Documents Department
A 3-D hydrodynamic dispersion model for modeling tracer transport in Geothermal Reservoirs

A 3-D hydrodynamic dispersion model for modeling tracer transport in Geothermal Reservoirs

Date: January 26, 1998
Creator: Wu, Yu-Shu & Pruess, Karsten
Description: A 3-D hydrodynamic dispersion model for tracer transport is developed and implemented into the TOUGH2 EOS3 (T2R3D) module. The model formulation incorporates a full dispersion tensor, based on a 3-D velocity field with a 3-D, irregular grid in a heterogeneous geological system. Two different weighting schemes are proposed for spatial average of 3-D velocity fields and concentration gradients to evaluate the mass flux by dispersion and diffusion of a tracer or a radionuclide. This new module of the TOUGH2 code is designed to simulate processes of tracer/radionuclide transport using an irregular, 3-D integral finite difference grid in non-isothermal, three-dimensional, multiphase, porous/fractured subsurface systems. The numerical method for this transport module is based on the integral finite difference scheme, as in the TOUGH2 code. The major assumptions of the tracer transport module are: (a) a tracer or a radionuclide is present and transported only within the liquid phase, (b) transport mechanisms include molecular diffusion and hydrodynamic dispersion in the liquid phase in addition to advection, and (c) first order decay and linear adsorption on rock grains are taken into account. The tracer or radionuclide is introduced as an additional mass component into the standard TOUGH2 formulation, time is discretized fully implicitly, ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Measurement of Deformation Microstructure of Al(0.2%)Mg Using Submicron Resolution White X-Ray Microbeams

3-D Measurement of Deformation Microstructure of Al(0.2%)Mg Using Submicron Resolution White X-Ray Microbeams

Date: November 29, 1999
Creator: Larson, B. C.; tamura, N.; Chung, J.-S.; Ice, G. E.; Budai, J. D.; Tischler, J. Z. et al.
Description: We have used submicron-resolution white x-ray microbeams on the MHATT-CAT beamline 7-ID at the Advanced Photon Source to develop techniques for three-dimensional investigation of the deformation microstructure in a 20% plane strain compressed Al(0.2%)Mg tri-crystal. Kirkpatrick-Baez mirrors were used to focus white radiation from an undulator to a 0.7 x 0.7 {micro}m{sup 2} beam that was scanned over bi- and tri-crystal regions near the triple-junction of the tri-crystal. Depth resolution along the x-ray microbeam of less than 5 microns was achieved by triangulation to the diffractibn source point using images taken at a series of CCD distances from the microbeam. Computer indexing of the deformation cell structure in the bi-crystal region provided orientations of individual subgrains to {approximately}0.01 degrees, making possible detailed measurements of the rotation axes between individual cells.
Contributing Partner: UNT Libraries Government Documents Department
A 3-d modular gripper design tool

A 3-d modular gripper design tool

Date: January 1, 1997
Creator: Brown, R.G. & Brost, R.C.
Description: Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, ...
Contributing Partner: UNT Libraries Government Documents Department
A 3-d modular gripper design tool

A 3-d modular gripper design tool

Date: February 1, 1997
Creator: Brown, R.G. & Brost, R.C.
Description: Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the ...
Contributing Partner: UNT Libraries Government Documents Department
A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry

A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry

Date: December 1, 1995
Creator: Goldberg, K.A.; Tejnil, E. & Bokor, J.
Description: A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.
Contributing Partner: UNT Libraries Government Documents Department