You limited your search to:

  Partner: UNT Libraries Government Documents Department
1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

Date: March 19, 2010
Creator: Zylstra, A; Barnard, J J & More, R M
Description: One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.
Contributing Partner: UNT Libraries Government Documents Department
1 GeV CW nonscaling FFAG for ADS, and magnet parameters

1 GeV CW nonscaling FFAG for ADS, and magnet parameters

Date: May 20, 2012
Creator: Johnstone, C.; Meot, F.; Snopok, P. & Weng, W.
Description: Multi-MW proton driver capability remains a challenging, critical technology for many core HEP programs, particularly the neutrino ones such as the Muon Collider and Neutrino factory, and for high-profile energy applications such as Accelerator Driven Subcritical Reactors (ADS) and Accelerator Transmutation of Waste for nuclear power and waste management. Work is focused almost exclusively on an SRF linac, as, to date, no re-circulating accelerator can attain the 10-20 MW capability necessary for the nuclear applications. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologies in FFAG accelerator design. Work is progressing on a stable, high-intensity, 1 GeV isochronous FFAG. Initial specifications of novel magnets with the nonlinear radial fields required to support isochronous operation are also reported here.
Contributing Partner: UNT Libraries Government Documents Department
1-GeV Linac Upgrade Study at Fermilab

1-GeV Linac Upgrade Study at Fermilab

Date: September 1998
Creator: Popovic, M.; Moretti, A.; Noble, R. & Schmidt, C. W.
Description: A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H{sup -} beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce {approximately}10{sup 14} protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given.
Contributing Partner: UNT Libraries Government Documents Department
A 1-kW power demonstration from the advanced free electron laser

A 1-kW power demonstration from the advanced free electron laser

Date: August 1997
Creator: Sheffield, R. L.; Conner, C. A. & Fortgang, C. M.
Description: This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective of this project was to engineer and procure an electron beamline compatible with the operation of a 1-kW free-electron laser (FEL). Another major task is the physics design of the electron beam line from the end of the wiggler to the electron beam dump. This task is especially difficult because electron beam is expected to have 20 kW of average power and to simultaneously have a 25% energy spread. The project goals were accomplished. The high-power electron design was completed. All of the hardware necessary for high-power operation was designed and procured.
Contributing Partner: UNT Libraries Government Documents Department
O(1/M{sup 3}) effects for heavy-light mesons in lattice NRQCD

O(1/M{sup 3}) effects for heavy-light mesons in lattice NRQCD

Date: March 1998
Creator: Lewis, Randy & Woloshyn, R. M.
Description: The masses of spin-singlet and spin-triplet S-wave mesons containing a single heavy quark are computed in the quenched approximation. The light quark action and gauge field action are both classically-improved and tadpole-improved, and the couplings to the heavy quark are organized by the 1/M expansion of tadpole-improved NRQCD. At each of two lattice spacings, near 0.22fm and 0.26fm, meson masses are obtained for heavy quarks spanning the region between charmed and bottom mesons. Results up to O(1/M), O(1/M{sup 2})and O(1/M{sup 3}) are displayed separately, so that the convergence of the heavy quark expansion can be discussed. Also, the effect of each term in the O(1/M{sup 3}) contribution is computed individually. For bottom mesons the 1/M-expansion appears to be satisfactory, but the situation for charmed mesons is less clear.
Contributing Partner: UNT Libraries Government Documents Department
1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents

1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents

Date: August 1, 1996
Creator: Veeck, A. C.
Description: Excitation functions have been measured for complex fragment emission from the compound nucleus {sup 98}Mo, produced by the reaction of {sup 86}Kr with {sup 12}C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are {approximately} 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from {sup 90}Mo and {sup 94}Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs.
Contributing Partner: UNT Libraries Government Documents Department
A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

Date: June 1, 2001
Creator: REASS, W.A.; DOSS, J.D. & GRIBBLE, R.F.
Description: This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.
Contributing Partner: UNT Libraries Government Documents Department
A-01 metals in stormwater runoff evaluation

A-01 metals in stormwater runoff evaluation

Date: November 6, 1997
Creator: Eldridge, L. L.
Description: As a part of the A-01 investigation required by the NPDES permit, an investigation was performed to ascertain the concentrations of metals specifically copper (Cu), lead (Pb), and zinc (Zn) in stormwater being discharged through the outfall. This information would indicate whether all water being discharged would have to be treated or if only a portion of the discharged stormwater would have to be treated. A study was designed to accomplish this. The first goal was to determine if the metal concentrations increased, decreased, or remained the same as flow increased during a rain event. The second goal was to determine if the concentrations in the storm water were due to dissolved. The third goal was to obtain background data to ascertain if effluent credits could be gained due to naturally occurring metals.Samples from this study were analyzed and indicate that the copper and lead values increase as the flow increases while the zinc values remain essentially the same regardless of the flow rate. Analyses of samples for total metals, dissolved metals, TSS, and metals in solids was complicated because in all cases metals contamination was found in the filters themselves. Some conclusions can be derived if this problem is ...
Contributing Partner: UNT Libraries Government Documents Department
1 MeV electron irradiation of solid Xe nanoclusters in Al : an in-situ HRTEM study.

1 MeV electron irradiation of solid Xe nanoclusters in Al : an in-situ HRTEM study.

Date: December 5, 1997
Creator: Donnelly, S. E.; Furuya, K.; Song, M.; Birtcher, R. C. & Allen, C. W.
Description: Thin film samples of a simple embedded nanocluster system consisting of solid Xe precipitates in Al have been subjected to 1 MeV electron irradiation in a high-voltage electron microscope. High-resolution images have been recorded on videotape in order to monitor the changes to the system resulting from the passage of electrons through the film. Inspection of the video recordings (in some cases frame-by-frame) reveals that complex, rapid processes occur under the electron beam. These include, movement of small clusters, coalescence of neighboring clusters, shape changes, the apparent melting and resolidification of the Xe, and the creation and annealing of extended defects within the Xe lattice. A tentative interpretation of some of the observations is presented in terms of the electron-induced displacement processes at the surface of the clusters.
Contributing Partner: UNT Libraries Government Documents Department
1 mil gold bond wire study.

1 mil gold bond wire study.

Date: May 1, 2013
Creator: Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W. & Rutherford, Brian Milne
Description: In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.
Contributing Partner: UNT Libraries Government Documents Department
1 nA beam position monitoring system

1 nA beam position monitoring system

Date: June 1, 1997
Creator: Ursic, R.; Flood, R. & Piller, C.
Description: A system has been developed at Jefferson Lab for measuring transverse position of very low current beams delivered to the Experimental Hall B of the Continuous Electron Beam Accelerator Facility (CEBAF). At the heart of the system is a position sensitive cavity operating at 1497 MHz. The cavity utilizes a unique design which achieves a high sensitivity to beam position at a relatively low cavity Q. The cavity output RF signal is processed using a down-converter and a commercial lock-in amplifier operating at 100 kHz. The system interfaces with a VME based EPICS control system using the IEEE, 488 bus. The main features of the system are simple and robust design, and wide dynamic range capable of handling beam currents from 1 nA to 1000 nA with an expected resolution better than 100 {mu}m. This paper outlines the design of the system.
Contributing Partner: UNT Libraries Government Documents Department
1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

Date: March 15, 2004
Creator: Geothermal Energy Association
Description: Geothermal Energy Association supports the US geothermal industry in its efforts to bring more clean geothermal energy on-line throughout the world. Activities designed to accomplish this goal include: (1) developing and maintaining data bases, web pages, (2) commissioning of special studies and reports, (3) preparing, printing and distributing brochures and newsletters, (4) developing exhibits and displays, and participating in trade shows, (5) designing, producing and disseminating audio-video materials, (6) monitoring and coordinating programs carried out by US DOE and other Federal agencies, (7) holding workshops to facilitate communication between researchers and industry and to encourage their recognition of emerging markets for geothermal technology, (8) attending conferences, making speeches and presentation, and otherwise interacting with environmental and other renewable energy organizations and coalitions, (9) hosting events in Washington, DC and other appropriate locations to educate Federal, State and local representatives, environmental groups, the news media, and other about the status and potential of geothermal energy, (10) conducting member services such as the preparation and distribution of a member newsletter related to operating and maintaining s useful and viable association, and (11) performing similar kinds of activities designed to inform others about geothermal energy. The activities of the export promotion aim to ...
Contributing Partner: UNT Libraries Government Documents Department
A 1- to 5-MW, RCS-based, short-pulse spallation neutron source

A 1- to 5-MW, RCS-based, short-pulse spallation neutron source

Date: June 1997
Creator: Cho, Y.; Chae, Y.-C. & Crosbie, E.
Description: Two accelerator configurations, the linac/compressor ring scheme and the linac/RCS scheme, are commonly used to provide the proton beam power for a short-pulse spallation neutron source. In one configuration, a full-power linac provides the beam power and a compressor ring shortens the pulse length from 1-ms down to 1 {micro}s. In the other, rapid cycling synchrotrons (RCSs) provide the beam power and also shorten the pulse length. A feasibility study of a staged approach to a 5-MW proton source utilizing RCS technology, allowing intermediate operation at 1 MW, was performed at ANL and is presented in this paper. This study is complementary to a study in progress at ORNL based on a linac and an accumulator ring. The 1-MW facility consists of a 400-MeV injector linac that delivers 0.5-mA time-averaged current, a synchrotron that accelerates the beam to 2 GeV at a 30-Hz rate, and two neutron-generating target stations. In the second phase, the 2-GeV beam is accelerated to 10 GeV by a larger RCS, increasing the facility beam power to 5 MW.
Contributing Partner: UNT Libraries Government Documents Department
1-watt composite-slab Er:YAG laser. Revision 1

1-watt composite-slab Er:YAG laser. Revision 1

Date: February 13, 1997
Creator: Page, R. H.; Bartels, R. A.; Beach, R. J.; Sutton, S. B.; Furu, L. H. & LaSala, J. E.
Description: A diode-side-pumped discrete-optic Er{sup 3+} :YAG laser employs pump-light coupling through a sapphire plate diffusion-bonded to the laser slab, removing heat directly at the pump face of the slab instead of requiring conduction through to its far side. This lowers the temperature in the gain region and gives reduced thermal lensing, which produces exceptional beam quality (M{sup 2} {approx} 1.3) at output powers {approx} 0.3 Watt. Powers above 1 Watt have been demonstrated with peak slope efficiencies {approx}20%. The novel architecture is also applicable to other side-pumped lasers.
Contributing Partner: UNT Libraries Government Documents Department
2-1/2-D electromagnetic modeling of nodular defects in high-power multilayer optical coatings

2-1/2-D electromagnetic modeling of nodular defects in high-power multilayer optical coatings

Date: July 1996
Creator: Molau, N. E.; Brand, H. R.; Kozlowski, M. R. & Shang, C. C.
Description: Advances in the design and production of high damage threshold optical coatings for use in mirrors and polarizers have been driven by the design requirements of high-power laser systems such as the proposed 1.8-MJ National Ignition Facility (NIF) and the prototype 12- kJ Beamlet laser system. The present design of the NIF will include 192 polarizers and more than 1100 mirrors. Currently, the material system of choice for high-power multilayer optical coatings with high damage threshold applications near 1.06 {mu}m are e-beam deposited HfO{sub 2}/Si0{sub 2} coatings. However, the optical performance and laser damage thresholds of these coatings are limited by micron-scale defects and insufficient control over layer thickness. In this report, we will discuss the results of our 2-1/2-D finite-element time- domain (FDTD) EM modeling effort for rotationally-symmetric nodular defects in multilayer dielectric HR coatings. We have added a new diagnostic to the 2-1/2-D FDTD EM code, AMOS, that enables us to calculate the peak steady-state electric fields throughout a 2-D planar region containing a 2-D r-z cross-section of the axisymmetric nodular defect and surrounding multilayer dielectric stack. We have also generated a series of design curves to identify the range of loss tangents for Si0{sub 2} and HfO{sub ...
Contributing Partner: UNT Libraries Government Documents Department
(02.2) Scoping experiments; (02.3) long-term corrosion testing and properties evaluation of candidate waste package basket material

(02.2) Scoping experiments; (02.3) long-term corrosion testing and properties evaluation of candidate waste package basket material

Date: December 20, 1996
Creator: VanKonynenburg, R. A.
Description: The work described in this activity plan addresses Information Need 2.7.3 of the Yucca Mountain Site Characterization Plan (l), which reads Determination that the design criteria in lOCFR60.130 through 60.133 and any appropriate additional design objectives pertaining to criticality control have been met. This work falls under section WBS 1.2.2.5 2 (Basket Materials) of WBS 1.2.2.5 (Waste Package Materials) in the Work Breakdown Structure of the Yucca Mountain Site Characterization Project.
Contributing Partner: UNT Libraries Government Documents Department
The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

Date: February 1, 1996
Creator: Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.; Reed, R.A.; Shipley, G.; Westbrook, E.M. et al.
Description: Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.
Contributing Partner: UNT Libraries Government Documents Department
2.5 MHz feedforward beam loading compensation in the Fermilab Main Injector

2.5 MHz feedforward beam loading compensation in the Fermilab Main Injector

Date: May 19, 2003
Creator: Dey, Joseph E.; Kourbanis, Ioanis & Steimel, James
Description: There are five 2.5 MHz ferrite cavities (h = 28) in the Main Injector with an R/Q of 500 that are presently used for coalescing for the Tevatron. For use with the Fermilab Recycler, feedforward (FF) beam loading compensation (BLC) is required on these cavities because they will be required to operate at a net of 2 kV. Under current Recycler beam conditions, the beam-induced voltage is of this order. Recently a system using a digital bucket delay module operating at 53 MHz (h = 588) was used to produce a one-turn-delay feedforward signal. This signal was then combined with the low level RF signal to the 2.5 MHz cavities to cancel the beam induced voltage. During current operation they have shown consistently to operate with over a 20 dB reduction in beam loading.
Contributing Partner: UNT Libraries Government Documents Department
The 2.6 Angstrom resolution structure of Rhodobacter capsulatus bacterioferritin with metal-free dinuclear site and heme iron in a crystallographic 'special position'

The 2.6 Angstrom resolution structure of Rhodobacter capsulatus bacterioferritin with metal-free dinuclear site and heme iron in a crystallographic 'special position'

Date: October 31, 2001
Creator: Cobessi, D.; Huang, L.-S.; Ban, M.; Pon, N.G.; Daldal, F. & Berry, E.A.
Description: No abstract prepared.
Contributing Partner: UNT Libraries Government Documents Department
A 2.14 ms candidate optical pulsar in SN1987A: Ten years after

A 2.14 ms candidate optical pulsar in SN1987A: Ten years after

Date: September 1, 1997
Creator: Middleditch, J.; Kristian, J.A.; Kunkel, W.E.; Hill, K.M. & Watson, R.D.
Description: We have monitored Supernova 1987A in optical/near-infrared bands from a few weeks following its birth until the present time in order to search for a pulsar remnant. We have found an apparent pattern of emission near the frequency of 467.5 Hz - a 2.14 ms pulsar candidate, first detected in data taken on the remnant at the Las Campanas Observatory (LCO) 2.5-m Dupont telescope during 14-16 Feb. 1992 UT. We detected further signals near the 2.14 ms period on numerous occasions over the next four years in data taken with a variety of telescopes, data systems and detectors, at a number of ground- and space-based observatories. The sequence of detections of this signal from Feb. `92 through August `93, prior to its apparent subsequent fading, is highly improbable (< 10{sup -10} for any noise source). We also find evidence for modulation of the 2.14 ms period with a {approx}1,000 s period which, when taken with the high spindown of the source (2-3 x 10{sup -10} Hz/s), is consistent with precession and spindown via gravitational radiation of a neutron star with a non- axisymmetric oblateness of {approx}10{sup -6}, and an implied gravitational luminosity exceeding that of the Crab Nebula pulsar by ...
Contributing Partner: UNT Libraries Government Documents Department
2-D and 3-D Elastic Modeling with Shared Seismic Models

2-D and 3-D Elastic Modeling with Shared Seismic Models

Date: April 30, 2002
Creator: House, L.; Marfurt, K. J.; Larsen, S. & Martin, G. S.
Description: Several elastic models, both 2-D and 3-D, are being built for use in calculating synthetic elastic seismic data. The models will be made available to the research community, along with the synthetic data that are being calculated from them. These shared models have been proposed or contributed by participants in a collaborative industry, national laboratory, and university research project. The purpose of the modeling is to provide synthetic data to better understand elastic wave propagation and the effects of structural and stratigraphic complexities. The 2-D models are easier to design and change and synthetic calculations can be run relatively quickly in them. It will be possible to alter their layer properties and calculate time-lapse data sets from them. Field data will be available to accompany many of the 2-D models. 3-D models are more realistic, but more difficult to design and change. They also require considerably more computing resources to calculate synthetic data from them. A new 3-D model is being designed, and will be used for computing synthetic elastic data.
Contributing Partner: UNT Libraries Government Documents Department
2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks

2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks

Date: November 15, 1998
Creator: Mattor, N.; Porter, G. D.; Rognlien, T. D. & Ryutov, D. D.
Description: A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the ...
Contributing Partner: UNT Libraries Government Documents Department
2-D Finite Element Cable and Box IEMP Analysis

2-D Finite Element Cable and Box IEMP Analysis

Date: December 17, 1998
Creator: Scivner, G.J. & Turner, C.D.
Description: A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Contributing Partner: UNT Libraries Government Documents Department
2-D image segmentation using minimum spanning trees

2-D image segmentation using minimum spanning trees

Date: September 1995
Creator: Xu, Y. & Uberbacher, E. C.
Description: This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.
Contributing Partner: UNT Libraries Government Documents Department