You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Decade: 1990-1999
1.2 MW klystron for Asymmetric Storage Ring B Factory
A cw klystron operating at 476 MHz has been developed jointly by SLAC and Varian Associates. The unique set of characteristics of this tube were strongly guided by requirements of the fast feedback necessary to prevent oscillations of the storage ring beams caused by the detuned accelerating cavity. This requires a combination of bandwidth and short group delay within the klystron. The RF feedback stabilization scheme also requires amplitude modulation making it necessary to operate the klystron about 10% below saturation. Performance specifications and initial operating results are presented.
1-GeV Linac Upgrade Study at Fermilab
A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H{sup -} beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce {approximately}10{sup 14} protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given.
(02.2) Scoping experiments; (02.3) long-term corrosion testing and properties evaluation of candidate waste package basket material
The work described in this activity plan addresses Information Need 2.7.3 of the Yucca Mountain Site Characterization Plan (l), which reads Determination that the design criteria in lOCFR60.130 through 60.133 and any appropriate additional design objectives pertaining to criticality control have been met. This work falls under section WBS 2 (Basket Materials) of WBS (Waste Package Materials) in the Work Breakdown Structure of the Yucca Mountain Site Characterization Project.
The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid
Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.
2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks
A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the core toroidal rotation is co-moving with the inductive plasma current and when the ion {triangledown}B-drift is towards the single-null X-point.
2-D Finite Element Cable and Box IEMP Analysis
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
2-D image segmentation using minimum spanning trees
This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.
N = 2 string amplitudes
In physics, solvable models have played very important roles. Understanding a simple model in detail teaches us a lot about more complicated models in generic situations. Five years ago, C. Vafa and I found that the closed N = 2 string theory, that is a string theory with the N = 2 local supersymmetry on the worldsheet, is classically equivalent to the self-dual Einstein gravity in four spacetime dimensions. Thus this string theory is solvable at the classical level. More recently, we have examined the N = 2 string partition function for spacial compactifications, and computed it to all order in the string perturbation expansion. The fact that such computation is possible at all suggests that the N = 2 string theory is solvable even quantum mechanically.
A 2 to 4 nm high power FEL on the SLAC linac
We report the results of preliminary studies of a 2 to 4 nm SASE FEL, using a photoinjector to produce the electron beam, and the SLAC linac to accelerate it to an energy up to 10 GeV. Longitudinal bunch compression is used to increases ten fold the peak current to 2.5 kA, while reducing the bunch length to the subpicosecond range. The saturated output power is in the multi-gigawatt range, producing about 10{sup 14} coherent photons within a bandwidth of about 0.2% rms, in a pulse of several millijoules. At 120Hz repetition rate the average power is about 1 W. The system is optimized for x-ray microscopy in the water window around 2 to 4 nm, and will permit imaging a biological sample in a single subpicosecond pulse.
3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis
The vacuum chamber proposed for the storage ring of the 7-GeV Advanced Photon Source (APS) basically consists of two parts: the beam chamber and the antechamber, connected to each other by a narrow gap. A sector of 1-meter-long chamber with dosed end plates, to which are attached the 1-inch-diameter beampipes centered at the beam chamber, has been built for experimental purposes. The 3-D code MAFIA has been used to simulate the frequency-domain behaviors of EM fields in this setup. The results are summarized in this note and are compared with that previously obtained from 2-D simulations and that from network analyzer measurements. They are in general agreement. A parallel analysis in the time-domain is reported in a separate note. The method of our simulations can be briefly described as follows. The 1-inch diameter beampipes are terminated by conducting walls at a length of 2 cm. The whole geometry can thus be considered as a cavity. The lowest RF modes of this geometry are computed using MAFIA. The eigenfrequencies of these modes are a direct output of the eigenvalue solver E3, whereas the type of each mode is determined by employing the postprocessor P3. The mesh sizes are chosen such that they are small enough for computations in the frequency region in which we are interested (the sampling theorem), while the total number of mesh points is still well within the range that our computer system can cope with.
3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. 1998 annual progress report
'The overall objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. Three specific objectives towards this end are: (1) understanding IP at the laboratory level through measurements of complex resistivity as a function of frequency in rock and soil samples with varying pore geometries, pore fluid conductivities and saturations, and contaminant chemistries and concentrations; (2) developing effective data acquisition techniques for measuring the critical IP responses (time domain or frequency domain) in the field; (3) developing modeling and inversion algorithms that permit the interpretation of field IP data in terms of subsurface geology and contaminant plume properties. The authors laboratory experiments to date are described in Appendices A and B, which consist of two papers submitted to the annual SAGEEP conference (Frye et al., 1998; Sturrock et al., 1998). The experiments involved measurements of complex resistivity vs. frequency on a suite of brine saturated sandstone samples. In one set of experiments, the fluid chemistry (pH, ionic strength, and cation type) was varied. In a second set of experiments, the microgeometry of the rock matrix was varied. The experiments showed that spectral IP responses are sensitive to subtle variations in both the solution chemistry and rock microgeometry. The results demonstrate that spectral IP responses have the potential of being sensitive indicators of in-situ chemistry and microgeometry, the latter of which may be related to the hydraulic properties. Data Acquisition The authors have been looking in some detail at the effects of electromagnetic coupling and how to practically deal with it. In this area, the results to date are summarized in Vandiver (1998). The progress in the development of modeling and inversion algorithms for IP is described in Appendix C, a paper submitted to the annual SAGEEP conference (Shi et al., 1998). The authors have developed algorithms for forward modeling and inversion of spectral IP data in 3-D media. The algorithms accommodate a general earth model with a complex electrical conductivity as a function of frequency and 3-D spatial position. Using regularization and optimization techniques, the inversion algorithm obtains a 3-D image of resistivity amplitude and phase for each frequency contained in the data set. They have begun testing their algorithms on synthetic data generated from a simple model of a contaminant plume. The complex resistivity parameters of the background medium and plume are based on the laboratory results described above.'
3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. Annual progress report, September 15, 1996--September 14, 1997
'The objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. The first-year accomplishments are (1) laboratory experiments on fluid-saturated sandstones quantifying the dependence of spectral IP responses on solution chemistry and rock micro-geometry; (2) library research on the current understanding of electromagnetic coupling effects on IP data acquired in the field: and (3) development of prototype forward modeling and inversion algorithms for interpreting IP data in terms of 3-D models of complex resistivity.'
3-D Target Location from Stereoscopic SAR Images
SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.
3-D woven, mullite matrix, composite filter
Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1996 pilot scale demonstration in one of the two hot gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and II) objective is to develop and demonstrate the suitability of the Westinghouse/Techniweave next generation composite candle filter for use in Pressurized Fluidized Bed Combustion (PFBC) and/or Integrated Gasification Combined Cycle (IGCC) power generation systems. The Optional Task (Phase M, Task 5) objective is to fabricate, inspect and ship to Wilsonville Hot gas particulate filters are key components for the successful commercializaion of advanced coal-based power-generation systems such as Pressurized Fluidized-bed Combustion (PFBC), including second-generation PFBC, and Integrated Gasification Combined Cycles (IGCC). Current generation monolithic ceramic filters are subject to catastrophic failure because they have very low resistance to crack propagation. To overcome this problem, a damage-tolerant ceramic filter element is needed.
3-dimensional wells and tunnels for finite element grids
Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.
3(omega) damage threshold evaluation of final optics components using Beamlet mule and off-line testing
A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.
5-Volt and 4.6 V plateaus in LiMn{sub 2}O{sub 4} thin films
Additional plateaus with median voltages of {similar_to}4.6 V, and {similar_to}5 V have been observed on charging thin film lithium batteries with crystalline LiMn{sub 2}O{sub 4} cathodes to 5.3 V. Total charge extracted from the 4 V and the two additional plateaus corresponded to about 1Li/Mn{sub 2}O{sub 4}, but the distribution of capacity among the three plateaus varied from film to film. It is speculated that the additional plateaus result from formation of mixed spinel structures in which a fraction of the 8a sites areoccupied by Mn{sup 2+} or Mn{sup 4+} ions and a fraction of the Li{sup +} ions occupy the 16d sites. After charging to 5.3 V, the 4.6 V plateau disappeared, and the capacity of the 4 V plateau increased at the expense of that of the 5 V plateau. The latter change is attributed to movement of Mn{sup 3+} or Mn{sup 5+} ions from 8a to 16d sites.
A 10-GeV, 5-MW proton source for a muon-muon collider
The performance parameters of a proton source which produces the required flux of muons for a 2-TeV on 2-TeV muon collider are: a beam energy of 10 GeV, a repetition rate of 30 Hz, two bunches per pulse with 5 x 10{sup 13} protons per bunch, and an rms bunch length of 3 nsec (1). Aside from the bunch length requirement, these parameters are identical to those of a 5-MW proton source for a spallation neutron source based on a 10-GeV rapid cycling synchrotron (RCS) (2). The 10-GeV synchrotron uses a 2-GeV accelerator system as its injector, and the 2-GeV RCS is an extension of a feasibility study for a I-MW spallation source described elsewhere (3--9). A study for the 5-MW spallation source was performed for ANL site-specific geometrical requirements. Details are presented for a site-independent proton source suitable for the muon collider utilizing the results of the 5-MW spallation source study.
A 10-GeV, 5-MW proton source for a pulsed spallation source
A feasibility study for a pulsed spallation source based on a 5-MW, 10-GeV rapid proton synchrotron (RCS) is in progress. The integrated concept and performance parameters of the facility are discussed. The 10-GeV synchrotron uses as its injector the 2-GeV accelerator system of a 1-MW source described elsewhere. The 1-MW source accelerator system consists of a 400-MeV H{sup {minus}} linac with 2.5 MeV energy spread in the 75% chopped (25% removed) beam and a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV. The time averaged current of the accelerator system is 0.5 mA, equivalent to 1.04 {times} 10{sup 14} protons per pulse. The 10-GeV RCS accepts the 2 GeV beam and accelerates it to 10 GeV. Beam transfer from the 2-GeV synchrotron to the 10-GeV machine u highly efficient bunch-to-bucket injection, so that the transfer can be made without beam loss. The synchrotron lattice uses FODO cells of 90{degrees} phase advance. Dispersion-free straight sections are obtained using a missing magnet scheme. The synchrotron magnets are powered by dual-frequency resonant circuits. The magnets are excited at a 20-Hz rate and de-excited at 60-Hz. resulting in an effective 30-Hz rate. A key feature of the design of this accelerator system is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented.
10-MW demonstration of the gas suspension absorption process at TVA`s Center for Emissions Research. Final report
The Tennessee Valley Authority (TVA) in cooperation with AirPol Inc., and the U.S. Department of Energy (DOE), has recently completed a successful 17-month test program with the AirPol Gas Suspension Absorption (GSA) flue gas desulfurization (FGD) process at TVA`s Center for Emissions Research (CER). This project was selected by DOE for funding in the third round of the Clean Coal Technology Program. This 10-MW demonstration of the GSA FGD system at the CER was the first application of this technology in the U.S. The GSA test program, which was cofunded two-thirds by TVA and one-third by DOE/AirPol, was completed over a 17-month period from November 1, 1992 to March 31, 1993. This test program demonstrated that the GSA FGD technology could achieve high SO{sub 2} removal efficiencies (90+ percent) for a 2.7 percent sulfur (as-fired) coal application, while maintaining particulate emissions below the New Source Performance Standards (NSPS), i.e., 0.03 lb/MBtu, in a four-field electrostatic precipitator. The reliability and operability of this system was also demonstrated in a 28-day, 24 hour/day, continuous run during which the GSA unit simultaneously achieved high SO{sub 2} removal efficiencies (90+ percent) and maintained particulate emissions below the NSPS. Also, the air toxics removal capabilities of the GSA system were determined in a series of tests. A 1-MW pulsejet baghouse (PJBH) pilot plant was also tested in conjunction with this GSA test program. This PJBH testing was initially cofunded by TVA and the Electric Power Research Institute, who were later joined by AirPol and DOE in sponsoring this PJBH testing. A 14-day PJBH demonstration run was also completed to confirm the reliability of this system.
Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors.
60 kilograms high explosive containment with multi-diagnostic capability
In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) proposes to construct a 60 kilogram (kg) firing chamber to provide blast-effects containment for most of its open-air, high explosives, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the generated hazardous waste.
94-1 Research and Development Project Lead laboratory support. Status report, October 1--December 31, 1995
This is a quarterly progress report of the 94-1 Research and Development Lead Laboratory Support Technical Program Plan for the first quarter of FY 1996. The report provides details concerning descriptions, DOE-complex-wide material stabilization technology needs, scientific background and approach, progress, benefits to the DOE complex, and collaborations for selected subprojects. An executive summary and report on end-of-quarter spending is included.
100-FR-3 groundwater/soil gas supplemental limited field investigation report
In 1993, a Limited Field Investigation (LFI) was conducted for the 100-FR-3 Operable Unit which identified trichloroethylene (TCE) as a contaminant of potential concern (COPC) (DOE-RL 1994). In groundwater samples collected for the LFI, TCE was detected in well 199-177-1 at a concentration exceeding the U.S. Environmental Protection Agency (EPA) maximum contaminant level (5 {mu}g/L) and Washington State groundwater criteria (3 {mu}g/L). With the concurrence of the EPA and the Washington State Department of Ecology (Ecology), a supplemental LFI was conducted to determine the extent and potential source of TCE groundwater contamination associated with the 100-FR-3 Operable Unit. This report summarizes the activities and results of the groundwater/soil gas supplemental LFI for the 100-FR-3 Operable Unit. The primary objective of this investigation was to assess the lateral distribution of TCE in shallow (3 to 5 ft below the water table) groundwater associated with the 100-FR-3 Operable Unit. The second objective was to assess soil gas (3 to 5 concentrations in the study area in an attempt to identify potential sources of TCE and develop a correlation between soil gas and groundwater concentrations). Finally, the third objective of the investigation was to refine the site conceptual model.
A 100 ps gated x-ray spectrometer
Material opacities are of interest in many fields. We have developed a Bragg reflection spectrometer that is gated for imaging samples in a laser heated environment for opacity measurement. A micro-channel plate is coated with a photocathode material and a fast pulse is launched across it. Electrons are converted to photons in a phosphor and recorded on film. Optical gate pulse widths of 100 ps are achieved. Some optical pulse width and sensitivity enhancements are noted at launch and termination. Events of interest are 200 ps long. The framing window is approximately 250 ps in length. Timing jitter is a problem. The instrument timing networks have been examined, and the source of jitter is still unknown. Timing to 50 ps resolution is desired. Close in proximity to the laser-driven event leads to complications in shielding from hard x-rays, hot electrons and shock-driven damage. High Z materials provide shielding from hard x-rays. Magnets screen out hot electrons produced by laser-matter interactions Filters provide energy fiducials. PCD`s provide high resolution timing measurements. Data is recorded on film in a specially designed film pack. The instrument is designed to be used in the NOVA Laser Facility at Lawrence Livermore National Laboratory.
105-KW Sandfilter Backwash Pit sludge volume calculation
The volume of sludge contained in the 100-KW Sandfilter Backwash Pit (SFBWP) was calculated from depth measurements of the sludge, pit dimension measurements and analysis of video tape recordings taken by an underwater camera. The term sludge as used in this report is any combination of sand, sediment, or corrosion products visible in the SFBWP area. This work was performed to determine baseline volume for use in determination of quantities of uranium and plutonium deposited in the pit from sandfilter backwashes. The SFBWP has three areas where sludge is deposited: (1) the main pit floor, (2) the transfer channel floor, and (3) the surfaces and structures in the SFBWP. The depths of sludge and the uniformity of deposition varies significantly between these three areas. As a result, each of the areas was evaluated separately. The total volume of sludge determined was 3.75 M{sup 3} (132.2 ft{sup 3}).
105-N basin sediment disposition phase-two sampling and analysis plan
The sampling and analysis plan for Phase 2 of the 105-N Basin sediment disposition task defines the sampling and analytical activities that will be performed to support characterization of the sediment and selection of an appropriate sediment disposal option.
120-D-1 (100-D) ponds training plan
This is the Environmental Restoration Contractor Team training plan for the 100-D Ponds treatment, storage, and disposal unit. This plan is intended to meet the requirements of WAC 173-303-330 and the Hanford Dangerous Waste Permit. The WAC 173-303-330(1)(d)(ii, v, vi) requires that personnel be familiar, where applicable, with waste feed cut-off systems, proper responses to groundwater contamination incidents, shutdown of operations, response to fire or explosion, and other process operation activities.
183-H Basin sludge treatability test report
This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted
183-H Solar Evaporation Basins PostClosure Plan
The 183-H Solar Evaporation Basins (183-H) have certified closure under a modified closure option available in the Hanford Facility Dangerous Waste Permit under Condition II.K.3. The following information contains a description of the unit, past closure actions, and postclosure care requirements subject to compliance under the Permit. Corrective actions required for dangerous waste constituents remaining at 183-H will occur in conjunction with Comprehensive Environmental Response, Compensation, and Liability Act remedial actions for the 100-HR-1 Source Operable Unit and the 100-HR-3 Groundwater Operable Unit
183 KE Potable water system analysis plan
Sampling analysis plans (SAP) are a recognized manner of providing applicable requirements for conducting media sampling and analysis in a manner consistent with prescirbed objectives. This SAP has been prepared to satisfy the data quality objectives listed in this SAP with respect to the operation of the 183 KE potable water for K Area.
183 KE Potable Water System Quality Assurance Project Plan
This Quality Assurance Project Plan (QAPP) describes the quality assurance (QA) requirements for sampling, analysis, equipment, and data reporting for the 183 KE Potable Water Facility.
200 Area TEDF effluent sampling and analysis plan
This sampling analysis sets forth the effluent sampling requirements, analytical methods, statistical analyses, and reporting requirements to satisfy the State Waste Discharge Permit No. ST4502 for the Treated Effluent Disposal Facility. These requirements are listed below: Determine the variability in the effluent of all constituents for which enforcement limits, early warning values and monitoring requirements; demonstrate compliance with the permit; and verify that BAT/AKART (Best Available Technology/All know and Reasonable Treatment) source, treatment, and technology controls are being met.
200-BP-5 operable unit treatability test report
The 200-BP-5 Operable Unit was established in response to recommendations presented in the 200 East Groundwater Aggregate Area Management Study Report (AAMSR) (DOE-RL 1993a). Recognizing different approaches to remediation, the groundwater AAMSR recommended separating groundwater from source and vadose zone operable units and subdividing 200 East Area groundwater into two operable units. The division between the 200-BP-5 and 200-PO-1 Operable Units was based principally on source operable unit boundaries and distribution of groundwater plumes derived from either B Plant or Plutonium/Uranium Extraction (PUREX) Plant liquid waste disposal sites.
222-S Laboratory analytical report for tank 241-C-106, grab samples 6C-96-1 through 6C-96-16 {ampersand} 6C-96-17-FB
This document is the analytical report for grab samples 6C-96-1through 6C-96-16 and 6C-96-17-FB from tank 241-C-106.
222-S Laboratory Quality Assurance Plan. Revision 1
This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.
The 239 Pu(n,2n)238Pu cross section: preliminary calculations
The primary motivation for the present work is to provide theoretical values for the ratio of the partial <sup>239</sup>Pu(n,2nx{gamma})<sup>238</sup>Pu to total <sup>239</sup> Pu(n,2n)<sup>238</sup>Pu cross section for several discrete gamma transitions. Results and conclusions of preliminary calculations from threshold to 20 MeV are presented. Calculations are based on theoretical models with parameters obtained from the literature or from our ad hoc systematics. Optical model cross sections and transmission coefficients were determined using the coupled-channels method. The calculations included a preequilibrium component followed by multiple particle and gamma-ray emissions. Fission competition was included at all stages of de-excitation. Suggestions for further verifications and possible improvements are provided.
283-E and 283-W Hazards Assessment
This document establishes the technical basis in support of Emergency Planning Activites for the 283-E and 283-W Facilities on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.
300 Area dangerous waste tank management system: Compliance plan approach. Final report
In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixed waste.
300 Area Disturbance Report
The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.
300 Area Process Trenches Supplemental Information to the Hanford Contingency Plan (DOE/RL-93-75)
The 300 Area Process Trenches are surface impoundments which were used to receive routine discharges of nonregulated process cooling water from operations in the 300 Area and dangerous waste from several research and development laboratories and the 300 Area Fuels Fabrication process. Discharges to the trenches ceased in 1994, and they were physically isolated in 1995. Remediation of the trenches is scheduled to begin during July 1997. Currently, there are no waste management activities required at the 300 Area Process Trenches and the unit does not present any significant hazards to adjacent units, personnel, or the environment. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 300 Area Process Trenches, however, during remediation, exposure, spill, fire, and industrial hazards will exist. This contingency plan addresses the emergency organization, equipment and evacuation routes pertinent to the process trenches during remediation
300 area TEDF NPDES Permit Compliance Monitoring Plan
This document presents the 300 Area Treated Effluent Disposal Facility (TEDF) National Pollutant Discharge Elimination System (NPDES) Permit Compliance Monitoring Plan (MP). The MP describes how ongoing monitoring of the TEDF effluent stream for compliance with the NPDES permit will occur. The MP also includes Quality Assurance protocols to be followed.
300 area TEDF permit compliance monitoring plan
This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.
300 Area waste acid treatment system closure plan. Revision 1
This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.
300 Degree C GaN/AlGaN Heterojunction Bipolar Transistor
A GaN/AIGaN heterojunction bipolar transistor has been fabricated using C12/Ar dry etching for mesa formation. As the hole concentration increases due to more efficient ionization of the Mg acceptors at elevated temperatures (> 250oC), the device shows improved gain. Future efforts which are briefly summarized. should focus on methods for reducing base resistance.
324 Building life cycle dose estimates for planned work
This report describes a tool for use by organizational management teams to plan, manage, and oversee personnel exposures within their organizations. The report encompasses personnel radiation exposures received from activities associated with the B-Cell Cleanout Project, Surveillance and Maintenance Project, the Mk-42 Project, and other minor activities. It is designed to provide verifiable Radiological Performance Reports. The primary area workers receive radiation exposure is the Radiochemical Engineering Complex airlock. Entry to the airlock is necessary for maintenance of cranes and other equipment, and to set up the rail system used to move large pieces of equipment and shipping casks into and out of the airlock. Transfers of equipment and materials from the hot cells in the complex to the airlock are required to allow dose profiles of waste containers, shuffling of waste containers to allow grouting activities to go on, and to allow maintenance of in-cell cranes. Both DOE and the Pacific Northwest Laboratory (PNL) are currently investing in state-of-the-art decontamination equipment. Challenging goals for exposure reduction were established for several broad areas of activity. Exposure estimates and goals developed from these scheduled activities will be compared against actual exposures for scheduled and unscheduled activities that contributed to exposures received by personnel throughout the year. Included in this report are life cycle exposure estimates by calendar year for the B-Cell Cleanout project, a three-year estimate of exposures associated with Surveillance and Maintenance, and known activities for Calendar Year (CY) 1995 associated with several smaller projects. These reports are intended to provide a foundation for future dose estimates, by year, requiring updating as exposure conditions change or new avenues of approach to performing work are developed.
324 Building REC and HLV Tank Closure Plan
This closure plan describes the activities necessary to close the 324 Radiochemical Engineering Cells (REC) and High-Level Vault (HLV) in accordance with the Washington State Dangerous Waste regulations. To provide a complete description of the activities required, the closure plan relies on information contained in the 324 Building B-Cell Safety Cleanout Project (BCCP) plans, the 324 Building REC HLV Interim Waste Management Plan (IWMP), the Project Management Plan for Nuclear Facilities Management 300 Area Compliance Program, and the 324 High Level Vault Interim Removal Action Project (project management plan [PMP]). The IWMP addresses the management of mixed waste in accordance with state and federal hazardous waste regulations. It provides a strategy for managing high-activity mixed waste in compliance with Resource Conservation and Recovery Act (RCRA) requirements or provides for an alternative management approach for the waste. The BCCP outlines the past, present, and future activities necessary for removing from B-Cell the solid waste, including mixed waste generated as a result of historical research and development (R&D) activities conducted in the cell. The BCCP also includes all records and project files associated with the B-Cell cleanout. This information is referenced throughout the closure plan. The PMP sets forth the plans, organization, and systems that Pacific Northwest National Laboratory (PNNL) will use to direct and control the 324 High-Level Vault Interim Removal Action Project. This project will develop and implement a treatment strategy that will remove and stabilize the inventory of liquid waste from the 324 HLV tanks. The PMP also provides for flushing and sampling the flush solution.
324 Facility B-cell quality process plan
Quality Process Plan for the Restart of Cell Hot-Work. Addition of Table 6a.
324 Facility B-cell quality process plan
Quality Process Plan for the Restart of Cell Hot-Work. Addition of Table 5B.
327 to 324 Pin tube shipment quality management process plan
The B and W Hanford Company's (BWHC) 327 Facility, in the 300 Area of the Hanford Site, is preparing to ship five Pin Tubes to the 324 Facility for storage and eventual disposition. The Pin Tubes consist of legacy fuel pin pieces and drillings. They will be over-packed in new Pin Tubes and transported to 324 in three shipments. Once received at 324, two of the shipments will be combined for storage as a fissionable material batch, and the other shipment will be added to an existing batch.