You limited your search to:

  Partner: UNT Libraries Government Documents Department
Gamma-Ray Spectrometric Characterization of Overpacked CC104/107 RH-TRU Wastes: Surrogate Tests

Gamma-Ray Spectrometric Characterization of Overpacked CC104/107 RH-TRU Wastes: Surrogate Tests

Date: May 1, 2000
Creator: (INEEL), J. K. Hartwell; (ANL), R. T. Klann & (INEEL), M. E. McIlwain
Description: Development of the gamma-ray spectrometric technique termed GSAK (Gamma-Ray Spectrometry with Acceptable Knowledge) for the characterization of CC104/107 remote-handled transuranic (RH-TRU) wastes continued this year. Proof-of-principle measurements have been completed on the surrogate RH-TRU waste drums configured earlier this year. The GSAK technique uses conventional gamma-ray spectrometry to quantify the detectable fission product content of overpacked RH-TRU drums. These results are then coupled with the inventory report to characterize the waste drum content. The inventory report is based on process knowledge of the waste drum loading and calculations of the isotopic distribution in the spent fuel examined to generate the drummed wastes. Three RH-TRU surrogate drums were configured with encapsulated EBR-II driver fuel rod segments arranged in the surrogate drum assemblies. Segment-specific inventory calculations initially specified the radionuclide content of the fuel segments and thus the surrogate drums. Radiochemical assays performed on representative fuel element segments identified a problem in the accuracy of some of the fission and activation product inventory values and provided a basis for adjustment of the specified surrogate drum inventories. The three waste drum surrogates, contained within their 8.9 cm (3.5 inch) thick steel overpacks, were analyzed by gamma-ray spectrometry at the TREAT facility at Argonne ...
Contributing Partner: UNT Libraries Government Documents Department
Geothermal Electrical Production CO2 Emissions Study

Geothermal Electrical Production CO2 Emissions Study

Date: October 1, 1999
Creator: (INEEL), K. K. Bloomfield & Institute), J. N. Moore (Energy and Geoscience
Description: Emission of �greenhouse gases� into the environment has become an increasing concern. Deregulation of the electrical market will allow consumers to select power suppliers that utilize �green power.� Geothermal power is classed as �green power� and has lower emissions of carbon dioxide per kilowatt-hour of electricity than even the cleanest of fossil fuels, natural gas. However, previously published estimates of carbon dioxide emissions are relatively old and need revision. This study estimates that the average carbon dioxide emissions from geothermal and fossil fuel power plants are: geothermal 0.18 , coal 2.13, petroleum 1.56 , and natural gas 1.03 pounds of carbon dioxide per kilowatt-hour respectively.
Contributing Partner: UNT Libraries Government Documents Department
SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

Date: January 1, 2000
Creator: (PI), Alan W. Weimer; Czerpak, Peter & Hilbert, Patrick
Description: A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is ...
Contributing Partner: UNT Libraries Government Documents Department
Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

Date: March 1, 1999
Creator: (Parsons), G. B. Cotten; (INEEL), J. D. Navratil & Idaho), H. B. Eldredge (U of
Description: There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.
Contributing Partner: UNT Libraries Government Documents Department
Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

Date: October 1, 1998
Creator: (Parsons), K.S. Sorenson; Peterson, L.N. & (LMITCO), T.S. Green
Description: Test Area North (TAN) at the Idaho National Engineering and Environmental Laboratory (INEEL) is the site of a large trichloroethene (TCE) plume resulting from the historical injection of wastewater into the Snake River Plain Aquifer. The TAN Record of Decision (ROD) selected pump and treat as the final remedy and included a contingency for post-ROD treatability studies of alternative technologies. The technologies still under consideration are in-situ bioremediation, in-situ chemical oxidation, and natural attenuation. Both anaerobic and aerobic laboratory microcosm studies indicate the presence of microorganisms capable of chloroethene degradation. Field data indicate that TCE concentrations decrease relative to tritium and tetrachloroethene indicating an as yet unknown process is contributing to natural attenuation of TCE. Several methods for analyzing the field data have been evaluated and important limitations identified. Early results from the continued evaluation of the three alternative technologies suggest the combined approach of active remediation of the source area (in situ bioremediation and/or chemical oxidation replacing or augmenting pump and treat) and natural attenuation within the dissolved phase plume may be more cost and schedule effective than the base case pump and treat.
Contributing Partner: UNT Libraries Government Documents Department
Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

Date: November 1, 1995
Creator: (U.S.), Columbia River System Operation Review
Description: This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.
Contributing Partner: UNT Libraries Government Documents Department
Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Cultural Resources.

Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Cultural Resources.

Date: November 1, 1995
Creator: (U.S.), Columbia River System Operation Review
Description: This study attempts to identify and analyze the impacts of the System Operating Strategy (SOS) alternatives on cultural resources. The impacts include effects on Native American traditional cultural values, properties and practices. They also include effects on archeological or historic properties meeting the criteria of the National Register of Historic Places. In addition to responding to the requirements of the National Environmental Policy Act (NEPA), this analysis addresses the requirements of the National Historic Preservation Act (NHPA), the Archeological Resources Protection Act (ARPA), the Native American Graves Protection and Repatriation Act (NAGPRA), the Native American Religious Freedom Act (NARFA), and other relevant legislation. To meet their legally mandated cultural resources requirements, the SOR agencies will develop agreements and Implementation Plans with the appropriate State Historic Preservation Officers (SHPOs), Tribes, and the Advisory Council on Historic Preservation (ACHP) detailing the measures necessary to best manage the resource. The planning and implementation activities will be staged over a number of years in consultation with affected Tribes.
Contributing Partner: UNT Libraries Government Documents Department
Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Exhibits.

Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Exhibits.

Date: November 1, 1995
Creator: (U.S.), Columbia River System Operation Review
Description: The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930`s, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river ...
Contributing Partner: UNT Libraries Government Documents Department
Columbia River System Operation Review : Final Environmental Impact Statement, Appendix J: Recreation.

Columbia River System Operation Review : Final Environmental Impact Statement, Appendix J: Recreation.

Date: November 1, 1995
Creator: (U.S.), Columbia River System Operation Review
Description: This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts.
Contributing Partner: UNT Libraries Government Documents Department
Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

Date: November 1, 1995
Creator: (U.S.), Columbia River System Operation Review
Description: This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.
Contributing Partner: UNT Libraries Government Documents Department