You limited your search to:

  Partner: UNT Libraries Government Documents Department
Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza

Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza

Date: April 14, 2011
Creator: (HCTT-CHE), ORAU's Oak Ridge Institute for Science Education
Description: The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster - readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that - help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. This tool has been reviewed by a variety of key subject matter experts from federal, state, and local agencies and organizations. It also has ...
Contributing Partner: UNT Libraries Government Documents Department
Acid Pit Stabilization Project (Volume 1 - Cold Testing) and (Volume 2 - Hot Testing)

Acid Pit Stabilization Project (Volume 1 - Cold Testing) and (Volume 2 - Hot Testing)

Date: January 1, 1998
Creator: (INEEL), G. G. Loomis; (MSE), A. P. Zdinak; (MSE), M. A. Ewanic & (INEEL), J. J. Jessmore
Description: During the summer and fall of Fiscal Year 1997, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Treatability Study was performed at the Idaho National Engineering and Environmental Laboratory. The study involved subsurface stabilization of a mixed waste contaminated soil site called the Acid Pit. This study represents the culmination of a successful technology development effort that spanned Fiscal Years 1994-1996. Research and development of the in situ grout stabilization technique was conducted. Hardware and implementation techniques are currently documented in a patent pending with the United States Patent and Trademark Office. The stabilization technique involved using jet grouting of an innovative grouting material to form a monolith out of the contamination zone. The monolith simultaneously provides a barrier to further contaminant migration and closes voids in the soil structure against further subsidence. This is accomplished by chemical incorporation of contaminants into less soluble species and achieving a general reduction in hydraulic conductivity within the monolith. The grout used for this study was TECT-HG, a relatively dense iron oxide-based cementitious grout. The treatability study involved cold testing followed by in situ stabilization of the Acid Pit. Volume 1 of this report discusses cold testing, performed as part of a ...
Contributing Partner: UNT Libraries Government Documents Department
Performance assessment analyses unique to Department of Energy spent nuclear fuel

Performance assessment analyses unique to Department of Energy spent nuclear fuel

Date: June 4, 2000
Creator: (INEEL), H. H. Loo & (DE&S), J. O. Duguid
Description: This paper describes the iterative process of grouping and performance assessment that has led to the current grouping of the U.S. Department of Energy (DOE) spent nuclear fuel (SNF). The unique sensitivity analyses that form the basis for incorporating DOE fuel into the total system performance assessment (TSPA) base case model are described. In addition, the chemistry that results from dissolution of DOE fuel and high level waste (HLW) glass in a failed co-disposal package, and the effects of disposal of selected DOE SNF in high integrity cans are presented.
Contributing Partner: UNT Libraries Government Documents Department
Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

Date: July 1, 1999
Creator: (INEEL), J. Francfort; Argueta, J.; Edison), M. Wehrey (Southern California; Karner, D. & Applications), L. Tyree (Electric Transportation
Description: This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.
Contributing Partner: UNT Libraries Government Documents Department
Gamma-Ray Spectrometric Characterization of Overpacked CC104/107 RH-TRU Wastes: Surrogate Tests

Gamma-Ray Spectrometric Characterization of Overpacked CC104/107 RH-TRU Wastes: Surrogate Tests

Date: May 1, 2000
Creator: (INEEL), J. K. Hartwell; (ANL), R. T. Klann & (INEEL), M. E. McIlwain
Description: Development of the gamma-ray spectrometric technique termed GSAK (Gamma-Ray Spectrometry with Acceptable Knowledge) for the characterization of CC104/107 remote-handled transuranic (RH-TRU) wastes continued this year. Proof-of-principle measurements have been completed on the surrogate RH-TRU waste drums configured earlier this year. The GSAK technique uses conventional gamma-ray spectrometry to quantify the detectable fission product content of overpacked RH-TRU drums. These results are then coupled with the inventory report to characterize the waste drum content. The inventory report is based on process knowledge of the waste drum loading and calculations of the isotopic distribution in the spent fuel examined to generate the drummed wastes. Three RH-TRU surrogate drums were configured with encapsulated EBR-II driver fuel rod segments arranged in the surrogate drum assemblies. Segment-specific inventory calculations initially specified the radionuclide content of the fuel segments and thus the surrogate drums. Radiochemical assays performed on representative fuel element segments identified a problem in the accuracy of some of the fission and activation product inventory values and provided a basis for adjustment of the specified surrogate drum inventories. The three waste drum surrogates, contained within their 8.9 cm (3.5 inch) thick steel overpacks, were analyzed by gamma-ray spectrometry at the TREAT facility at Argonne ...
Contributing Partner: UNT Libraries Government Documents Department
Geothermal Electrical Production CO2 Emissions Study

Geothermal Electrical Production CO2 Emissions Study

Date: October 1, 1999
Creator: (INEEL), K. K. Bloomfield & Institute), J. N. Moore (Energy and Geoscience
Description: Emission of �greenhouse gases� into the environment has become an increasing concern. Deregulation of the electrical market will allow consumers to select power suppliers that utilize �green power.� Geothermal power is classed as �green power� and has lower emissions of carbon dioxide per kilowatt-hour of electricity than even the cleanest of fossil fuels, natural gas. However, previously published estimates of carbon dioxide emissions are relatively old and need revision. This study estimates that the average carbon dioxide emissions from geothermal and fossil fuel power plants are: geothermal 0.18 , coal 2.13, petroleum 1.56 , and natural gas 1.03 pounds of carbon dioxide per kilowatt-hour respectively.
Contributing Partner: UNT Libraries Government Documents Department
Giving Back: Collaborations with Others in Ecological Studies on the Nevada National Security Site

Giving Back: Collaborations with Others in Ecological Studies on the Nevada National Security Site

Date: February 24, 2013
Creator: (NFO), Scott A. Wade; (NFO), Kathryn S. Knapp & (NSTec), Cathy A. Wills
Description: Formerly named the Nevada Test Site, the Nevada National Security Site (NNSS) was the historical site for nuclear weapons testing from the 1950s to the early 1990s. The site was renamed in 2010 to reflect the diversity of nuclear, energy, and homeland security activities now conducted at the site. Biological and ecological programs and research have been conducted on the site for decades to address the impacts of radiation and to take advantage of the relatively undisturbed and isolated lands for gathering basic information on the occurrence and distribution of native plants and animals. Currently, the Office of the Assistant Manager for Environmental Management of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) oversees the radiological biota monitoring and ecological compliance programs on the NNSS. The top priority of these programs are compliance with federal and state regulations. They focus on performing radiological dose assessments for the public who reside near the NNSS and for populations of plants and animals on the NNSS and in protecting important species and habitat from direct impacts of mission activities. The NNSS serves as an invaluable outdoor laboratory. The geographic and ecological diversity of the site offers researchers ...
Contributing Partner: UNT Libraries Government Documents Department
Nevada National Security Site Environmental Remediation Progress Toward Closure of Contaminated Sites

Nevada National Security Site Environmental Remediation Progress Toward Closure of Contaminated Sites

Date: March 3, 2011
Creator: (NSO), Patrick Matthews (N-I) and Robert Boehlecke
Description: The Environmental Restoration activities at the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office assess the environmental impacts that resulted from atmospheric and underground nuclear tests conducted from 1951 to 1992 on the Nevada National Security Site and Nevada Test and Training Range (which includes the Tonopah Test Range). The goal is to protect public health and the environment through investigations and corrective actions. The Federal Facility Agreement and Consent Order (FFACO), established in 1996 between the State of Nevada Division of Environmental Protection (NDEP), DOE, and the U.S. Department of Defense, serves as the cleanup agreement for the Environmental Restoration activities and provides the framework for identifying, prioritizing, investigating, remediating, and monitoring contaminated sites. This agreement satisfies the corrective action requirements of the Resource Conservation and Recovery Act. To ensure efficiency in managing these corrective actions, the sites are grouped according to location, physical and geological characteristics, and/or contaminants. These groups, called corrective action units, are prioritized based on potential risk to workers and the public, available technology, future land use, agency and stakeholder concerns, and other criteria. Environmental Restoration activities include: Industrial Sites, Soils, and Underground Test Area. Nearly 15 years have passed since ...
Contributing Partner: UNT Libraries Government Documents Department
Comprehensive Epidemiologic Data Resource (CEDR) (Poster)

Comprehensive Epidemiologic Data Resource (CEDR) (Poster)

Date: December 12, 2012
Creator: (ORISE), Oak Ridge Institute for Science and Education
Description: This poster introduces the Comprehensive Epidemiologic Data Resource (CEDR), an electronic database with demographic, health outcome, and exposure information for over a million DOE nuclear plant and laboratory workers.
Contributing Partner: UNT Libraries Government Documents Department
U.S. Department of Energy Human Subjects Research Database (HSRD) A model for internal oversight and external transparency

U.S. Department of Energy Human Subjects Research Database (HSRD) A model for internal oversight and external transparency

Date: December 12, 2012
Creator: (ORISE), Oak Ridge Institute for Science and Education
Description: This poster introduces the Department of Energy (DOE) Human Subjects Research Database (HSRD), which contains information on all Department of Energy research projects involving human subjects that: are funded by DOE; are conducted in DOE facilities; are performed by DOE personnel; include current or former DOE or contract personnel.
Contributing Partner: UNT Libraries Government Documents Department
SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

Date: January 1, 2000
Creator: (PI), Alan W. Weimer; Czerpak, Peter & Hilbert, Patrick
Description: A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is ...
Contributing Partner: UNT Libraries Government Documents Department
RTE1, A Novel Regulator of Ethylene Receptor Function

RTE1, A Novel Regulator of Ethylene Receptor Function

Date: February 5, 2013
Creator: (PI), Caren Chang
Description: RTE1 is a novel conserved gene found in both plants and animals. The main aims of this project were to: 1) examine Arabidopsis RTE1 function using genetic and cell biological analyses, and 2) determine whether the Arabidopsis RTH gene plays a role similar to that of RTE1 in ethylene signaling.
Contributing Partner: UNT Libraries Government Documents Department
DOE-ER-46139-Phase II-Final-Report-Tritt-2011

DOE-ER-46139-Phase II-Final-Report-Tritt-2011

Date: October 21, 2011
Creator: (PI), Terry M. Tritt
Description: This proposal emphasizes investigations of the thermal and electrical transport properties of new and novel solid-state materials, with the specific goal of achieving higher efficiency solid-state thermoelectric materials. This program will continue to build a very strong collaborative research effort between researchers at Oak Ridge National Laboratory (ONRL) and Clemson University. We propose three new faculty hires and major equipment purchases in order to further enhance our level of national recognition. We will be positioned for competition for major non-EPSCoR DOE and DOD funding (i.e. NSF-Materials Research Center) and able to address many other areas of DOE and national importance. Graduate and undergraduate students will be extensively involved in this project, spending significant time at ORNL, thus gaining important training and educational opportunities. We will also include an outreach program to bring in outside students and faculty. An External Advisory Board of distinguished scientists will provide oversight to the program.
Contributing Partner: UNT Libraries Government Documents Department
Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

Date: March 1, 1999
Creator: (Parsons), G. B. Cotten; (INEEL), J. D. Navratil & Idaho), H. B. Eldredge (U of
Description: There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.
Contributing Partner: UNT Libraries Government Documents Department
Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

Date: October 1, 1998
Creator: (Parsons), K.S. Sorenson; Peterson, L.N. & (LMITCO), T.S. Green
Description: Test Area North (TAN) at the Idaho National Engineering and Environmental Laboratory (INEEL) is the site of a large trichloroethene (TCE) plume resulting from the historical injection of wastewater into the Snake River Plain Aquifer. The TAN Record of Decision (ROD) selected pump and treat as the final remedy and included a contingency for post-ROD treatability studies of alternative technologies. The technologies still under consideration are in-situ bioremediation, in-situ chemical oxidation, and natural attenuation. Both anaerobic and aerobic laboratory microcosm studies indicate the presence of microorganisms capable of chloroethene degradation. Field data indicate that TCE concentrations decrease relative to tritium and tetrachloroethene indicating an as yet unknown process is contributing to natural attenuation of TCE. Several methods for analyzing the field data have been evaluated and important limitations identified. Early results from the continued evaluation of the three alternative technologies suggest the combined approach of active remediation of the source area (in situ bioremediation and/or chemical oxidation replacing or augmenting pump and treat) and natural attenuation within the dissolved phase plume may be more cost and schedule effective than the base case pump and treat.
Contributing Partner: UNT Libraries Government Documents Department
A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

Date: November 1, 1999
Creator: (USGS), B. R. Orr
Description: Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).
Contributing Partner: UNT Libraries Government Documents Department
Strontium Distribution Coefficients of Basalt Core Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

Strontium Distribution Coefficients of Basalt Core Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

Date: December 1, 1998
Creator: (USGS), J. J. Colello; (ISU), J. J. Rosentreter; (USGS), R. C. Bartholomay & (USGS), M. J. Liszewski
Description: Strontium distribution coefficients (Kd's) were measured for 24 basalt core samples collected from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL). The measurements were made to help assess the variability of strontium Kd's as part of an ongoing investigation of strontium transport properties through geologic materials at the INEEL. The investigation is being conducted by the U.S. Geological Survey and Idaho State University in cooperation with the U.S. Department of Energy. Batch experiments were used to measure Kd's of basalt core samples using an aqueous solution representative of wastewater in waste-disposal ponds at the INEEL. Calculated strontium Kd's of the 24 basalt core samples ranged from 3.6{+-}1.3 to 29.4{+-}1.6 milliliters per gram. These results indicate a narrow range of variability in the strontium sorptive capacities of basalt relative to those of the sedimentary materials at the INEEL. The narrow range of the basalt Kd's can be attributed to physical and chemical properties of the basalt, and to compositional changes in the equilibrated solutions after being mixed with the basalt. The small Kd's indicate that basalt is not a major contributor in preventing the movement of strontium-90 in solution.
Contributing Partner: UNT Libraries Government Documents Department
Strontium Distribution Coefficients of Surficial and Sedimentary Interbed Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

Strontium Distribution Coefficients of Surficial and Sedimentary Interbed Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

Date: April 1, 1998
Creator: (USGS), M. J. Liszewski; (ISU), J. J. Rosentreter; (USGS), K. E. Miller & (USGS), R. C. Bartholomay
Description: The transport and fate of waste constituents in geologic media is dependent on physical and chemical processes that govern the distribution of constituents between the solid, geologic, stationary phase and an aqueous, mobile phase. This distribution often is quantified, at thermodynamic equilibrium by an empirically determined parameter called the distribution coefficient (Kd). Kd's can be used effectively to summarize the chemical factors that affect transport efficiency of ground-water constituents. Strontium distribution coefficients (Kd's) were measured for 21 surficial and 17 sedimentary interbed samples collected from sediment cores from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL) to help assess the variability of strontium Kd's at the INEEL as part of an ongoing investigation of strontium chemical-transport properties. Batch experimental techniques were used to determine strontium Kd's of the sediments. Measured strontium Kd's of th e surficial and interbedded sediments ranged from 26{+-}1 to 328{+-}41 milliliters per gram. These results indicate significant variability in the strontium sorptive capacities of surficial and interbedded sediments at the INEEL. Some of this variability can be attributed to physical and chemical properties of the sediment; other variability may be due to compositional changes in the equilibrated solutions after being mixed with the ...
Contributing Partner: UNT Libraries Government Documents Department
Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

Date: December 1, 1998
Creator: (USGS), R. C. Bartholomay; (USGS), L. M. Williams & Resources), L. J. Campbell (Idaho Department of Water
Description: The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from seven domestic wells, six irrigation wells, two springs, one dairy well, one observation well, and one stock well. Two quality-assurance samples also were collected and analyzed. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.
Contributing Partner: UNT Libraries Government Documents Department
Inverse Process Analysis for the Acquisition of Thermophysical Data

Inverse Process Analysis for the Acquisition of Thermophysical Data

Date: October 31, 2004
Creator: (UTK), Jay Frankel & (UTK), Adrian Sabau
Description: One of the main barriers in the analysis and design of materials processing and industrial applications is the lack of accurate experimental data on the thermophysical properties of materials. To date, the measurement of most of these high-temperature thermophysical properties has often been plagued by temperature lags that are inherent in measurement techniques. These lags can be accounted for with the appropriate mathematical models, reflecting the experimental apparatus and sample region, in order to deduce the desired measurement as a function of true sample temperature. Differential scanning calorimeter (DSC) measurements are routinely used to determine enthalpies of phase change, phase transition temperatures, glass transition temperatures, and heat capacities. In the aluminum, steel, and metal casting industries, predicting the formation of defects such as shrinkage voids, microporosity, and macrosegregation is limited by the data available on fraction solid and density evolution during solidification. Dilatometer measurements are routinely used to determine the density of a sample at various temperatures. An accurate determination of the thermophysical properties of materials is needed to achieve accuracy in the numerical simulations used to improve or design new material processes. In most of the instruments used to measure properties, the temperature is changed according to instrument controllers ...
Contributing Partner: UNT Libraries Government Documents Department
[Catalyst research]. Final Report

[Catalyst research]. Final Report

Date: March 14, 2005
Creator: (deceased), Ian P Rothwell & place), David R McMillin (in his
Description: Research results are the areas of catalyst precursor synthesis, catalyst fluxionality, catalyst stability, polymerization of {alpha}-olefins as well as the chemistry of Group IV and Group V metal centers with aryloxide and arylsulfide ligands.
Contributing Partner: UNT Libraries Government Documents Department
Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

Date: May 1, 2011
Creator: (deceased), Peter C. Eklund; Chung, T. C. Mike; Foley, Henry C. & Crespi, Vincent H.
Description: The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.
Contributing Partner: UNT Libraries Government Documents Department
Final Technical Report "Energy Partitioning in Elementary Chemical Reactions"

Final Technical Report "Energy Partitioning in Elementary Chemical Reactions"

Date: October 3, 2005
Creator: (deceased), Richard Bersohn & investigator), James J. Valentini (reporting
Description: This is the final technical report of the subject grant. It describes the scientific results obtained during the reporting period. These results are focused on the reactions of atomic oxygen with terminal alkenes. We have studied the production of vinoxy in these reactions. We have characterized the energy disposal in the reactions and have elaborated the reaction mechanism.
Contributing Partner: UNT Libraries Government Documents Department
Acute Toxicity and Bioaccumulation of Chloroform to Four Species of Freshwater Fish

Acute Toxicity and Bioaccumulation of Chloroform to Four Species of Freshwater Fish

Date: August 1, 1980
Creator: ,
Description: Acute toxicity of chloroform to four species of freshwater fish was studied in flow-through 96-hr toxicity tests. Chloroform is toxic to fish in the tens of parts per million, a concentration well above that which would be expected to be produced under normal power plant chlorination conditions. Investigations of acute toxicity of chloroform and the bioaccumulation of chlorinated compounds in tissues of fish revealed differences in tolerance levels and tissue accumulations. Mean 96-hr LC{sub 50}s for chloroform were 18 ppm for rainbow trout and bluegill, 51 ppm for largemouth bass and 75 ppm for channel catfish. Mortalities of bluegill and largemouth bass occurred during the first 4 hr of exposure while rainbow trout and channel catfish showed initial tolerance and mortalities occurred during the latter half of the 96-hr exposure. Rainbow trout had the highest level of chloroform tissue accumulation, 7 {micro}g/g tissue, catfish the second highest, 4 {micro}g/g tissue, followed by bluegill and largemouth bass which each accumulated about 3 {micro}g/g tissue. Accumulation of chloroform was less than one order of magnitude above water concentrations for all species.
Contributing Partner: UNT Libraries Government Documents Department