You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Serial/Series Title: NACA Special Report
Tests of a Highly Cambered Low-Drag-Airfoil Section with a Lift-Control Flap, Special Report

Tests of a Highly Cambered Low-Drag-Airfoil Section with a Lift-Control Flap, Special Report

Date: December 1, 1942
Creator: Abbott, Ira H. & Miller, Ralph B.
Description: Tests were made in the NACA two-dimensional low turbulence pressure tunnel of a highly cambered low-drag airfoil (NACA 65,3-618) with a plain flap designed for lift control. The results indicate that such a combination offers attractive possibilities for obtaining low profile-drag coefficients over a wide range of lift coefficients without large reductions of critical speed.
Contributing Partner: UNT Libraries Government Documents Department
Experimental investigation of a new type of low-drag wing-nacelle combination

Experimental investigation of a new type of low-drag wing-nacelle combination

Date: July 1, 1942
Creator: Allen, H. J. & Frick, C. W., Jr.
Description: None
Contributing Partner: UNT Libraries Government Documents Department
The Effect of Compressibility on the Growth of the Laminar Boundary Layer on Low-Drag Wings and Bodies

The Effect of Compressibility on the Growth of the Laminar Boundary Layer on Low-Drag Wings and Bodies

Date: January 1, 1943
Creator: Allen, H. Julian & Nitzberg, Gerald E.
Description: The development of the laminar boundary layer in a compressible fluid is considered. Formulas are given for determining the boundary-layer thickness and the ratio of the boundary-layer Reynolds number to the body Reynolds number for airfoils and bodies of revolution. It i s shown that the effect of compressibility will profoundly alter the Reynolds number corresponding to the upper limit of the range of the low-drag coefficients . The available data indicate that for low-drag and high critical compressibility speed airfoils and bodies of revolution, this effect is favorable.
Contributing Partner: UNT Libraries Government Documents Department
Tests in the Variable-Density Tunnel of Seven Tapered Wings Having N.A.C.A. 230 Mean Lines, Special Report

Tests in the Variable-Density Tunnel of Seven Tapered Wings Having N.A.C.A. 230 Mean Lines, Special Report

Date: August 1, 1937
Creator: Anderson, Raymond F.
Description: At the request of the Materiel Division of the Army Air Corps, seven tapered wings having sections based on the N.A,C.A. 230 mean line were tested in the variable-density wind tunnel, The characteristics of the wings are given.
Contributing Partner: UNT Libraries Government Documents Department
A Study of Transparent Plastics for use on Aircraft, Special Report

A Study of Transparent Plastics for use on Aircraft, Special Report

Date: May 1, 1937
Creator: Axilrod, Benjamin M. & Kline, Gordon M.
Description: Various transparent organic plastics, including both commercially available and experimental materials, have been examined to determine their suitability for use as flexible windshields on aircraft, The properties which have been studied include light transmission, haziness, distortion, resistance to weathering, scratch and indentation hardness, impact strength, dimensional stability, resistance to water and various cleaning fluids, bursting strength at normal and low temperatures, and flammability.
Contributing Partner: UNT Libraries Government Documents Department
A Study of Transparent Plastics for use on Aircraft. Supplement

A Study of Transparent Plastics for use on Aircraft. Supplement

Date: August 1, 1937
Creator: Axilrod, Benjamin M. & Kline, Gordon M.
Description: This supplement to a NACA study issued in May 1937 entitled "A Study of Transparent Plastics for Use on Aircraft", contains two tables. These tables contain data on bursting strengths of plastics, particularly at low temperatures. Table 1 contains the values reported in a table of the original memorandum, and additional values obtained at approximately 25 C, for three samples of Acrylate resin. The second table contains data obtained for the bursting strength when one surface of the plastic was cooled to approximately -35 C.
Contributing Partner: UNT Libraries Government Documents Department
Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

Date: January 1, 1940
Creator: Becker, John V.
Description: Determinations of boundary-layer transition on the NACA 0012 and 2301 airfoils were made in the 8-foot high-speed wind tunnel over a range of Reynolds Numbers from 1,600,000 to 16,800,000. The results are of particular significance as compared with flight tests and tests in wind tunnels of appreciable turbulence because of the extremely low turbulence in the high-speed tunnel. A comparison of the results obtained on NACA 0012 airfoils of 2-foot and 5-foot chord at the same Reynolds Number permitted an evaluation of the effect of compressibility on transition. The local skin friction along the surface of the NACA 0012 airfoil was measured at a Reynolds Number of 10,000,000. For all the lift coefficient at which tests were made, transition occurred in the region of estimated laminar separation at the low Reynolds Numbers and approach the point of minimum static pressure as a forward limit at the high Reynolds Numbers. The effect of compressibility on transition was slight. None of the usual parameters describing the local conditions in the boundary layer near the transition point served as an index for locating the transition point. As a consequence of the lower turbulence in the 8-foot high-speed tunnel, the transition points occurred consistently ...
Contributing Partner: UNT Libraries Government Documents Department
High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane

High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane

Date: April 1, 1940
Creator: Becker, John V. & Leonard, Lloyd H.
Description: Force tests were made of a 1/8-scale model of a twin-engine low-wing transport airplane in the NACA 8-foot high-speed wind tunnel to investigate compressibility and interference effects at speeds up to 450 miles per hour. In addition to tests of the standard arrangement of the model tests were made with several modifications designed to reduce the drag and to increase the critical speed. The results show serious increases in drag at critical speeds below 450 miles per hour due to the occurrence of compressibility burbles on the standard radial-engine cowlings, on sections of the wing as a result of wing-nacelle interference, and on the semi-retracted main landing wheels. The critical speed at which the shock occurred on the standard cowlings was 20 miles per hour lower in the presence of the fuselage than in the presence of the wing only. The drag of the complete model was reduced 25% at 300 miles per hour by completely retracting the landing gear, fairing the windshield irregularities, and substituting streamline nacelles (with allowance made for the proper amount of cooling-air flow) for the standard nacelle arrangement. The values of the critical Mach number were extended from 0.47 to 0.60 as a result of ...
Contributing Partner: UNT Libraries Government Documents Department
Model tests of a wing-duct system for auxiliary air supply

Model tests of a wing-duct system for auxiliary air supply

Date: January 1, 1941
Creator: Bierman, D. & Corson, B. W., Jr.
Description: None
Contributing Partner: UNT Libraries Government Documents Department
Relative Efficiencies and Design Charts for Various Engine-Propeller Combinations, Special Report

Relative Efficiencies and Design Charts for Various Engine-Propeller Combinations, Special Report

Date: September 1, 1936
Creator: Biermann, David
Description: The relative efficiencies of various engine-propeller combinations were the subject of a study that covered the important flight conditions, particularly the take-off. Design charts that graphically correlate the various propeller parameters were prepared to facilitate the solution of problems and also to c1arify the conception of the relationships of the various engine-propeller design factors. It is shown that, among the many methods for improving the take-off thrust, the use of high-pitch, large-diameter controllable propellers turning at low rotational speeds is probably the most generally promising. With such a combination the take-off thrust may be further increased, at the expense of a small loss in cruising efficiency, by compromise designs wherein the pitch setting is slightly reduced and the diameter is further increased. The degree of compromise necessary to accomplish the maximum possible take-off improvement depends on such design factors as overspeeding and overboosting at take-off as well as depending on the design altitude. Both overspeeding and designing for altitude operation have the same effect on the take-off thrust as compromising in that the propulsive efficiency is increased thereby; boosting the engine, however, has the reverse effect on the propulsive efficiency, although the brake horsepower is increased.
Contributing Partner: UNT Libraries Government Documents Department
Full-Scale Tests of 4- and 6-Blade, Single- and Dual-Rotating Propellers, Special Report

Full-Scale Tests of 4- and 6-Blade, Single- and Dual-Rotating Propellers, Special Report

Date: August 1, 1940
Creator: Biermann, David & Hartman, Edwin P.
Description: Test of 10-foot diameter, 4- and 6-blade single- and dual-rotating propellers were conducted in the 20-foot propeller-research tunnel. The propellers were mounted at the front end of a streamline body incorporating spinners to house the hub portions. The effect of a symmetrical wing mounted in the slipstream was investigated. The blade angles investigated ranged from 20 degrees to 65 degrees; the latter setting corresponds to airplane speeds of over 500 miles per hour. The results indicate that dual-rotating propellers were from 0 to 6% more efficient than single-rotating ones; but when operating in the presence of a wing the gain was reduced about one-half. Other advantages of dual-rotating propellers were found to include greater power absorption and greater efficiency at the low V/nD operating range of high pitch propellers.
Contributing Partner: UNT Libraries Government Documents Department
Wind-Tunnel Investigation of Rectangular Air-Duct Entrances in the Leading Edge of an NACA 23018 Wing, Special Report

Wind-Tunnel Investigation of Rectangular Air-Duct Entrances in the Leading Edge of an NACA 23018 Wing, Special Report

Date: September 1, 1940
Creator: Biermann, David & McLellan, Charles H.
Description: A preliminary investigation of a number of duct entrances of rectangular shape installed in the leading edge of a wing was conducted in the NACA 20-foot tunnel to determine the external drag, the available pressure, the critical Mach numbers, and the effect on the maximum lift. The results showed that the most satisfactory entrances, which had practically no effect on the wing characteristics, had their lips approximately in the vertical plane of the leading edge of the wing. This requirement necessitated extending the lips outside the wing contour for all except the small entrances. Full dynamic pressure was found to be available over a fairly wide range of angle of attack. The critical Mach number for a small entrance was calculated to be as high as that for the plain wing but was slightly lower for the larger entrances tested.
Contributing Partner: UNT Libraries Government Documents Department
Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report

Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report

Date: February 1, 1939
Creator: Biermann, David & Valentine, E. Floyd
Description: Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.
Contributing Partner: UNT Libraries Government Documents Department
Preliminary Tests of Blowers of Three Designs Operating in Conjunction with a Wing-Duct Cooling System for Radial Engines, Special Report

Preliminary Tests of Blowers of Three Designs Operating in Conjunction with a Wing-Duct Cooling System for Radial Engines, Special Report

Date: June 1, 1939
Creator: Biermann, David & Valentine, E. Floyd
Description: This paper is one of several dealing with methods intended to reduce the drag of present-day radial engine installations and improve the cooling at zero and low air speeds, The present paper describes model wind-tunnel tests of blowers of three designs tested in conjunction with a wing-nacelle combination. The principle of operation involved consists of drawing cooling air into ducts located in the wing root at the point of maximum slipstream velocity, passing the air through the engine baffles from rear to front, and exhausting the air through an annular slot located between the propeller and the engine with the aid of a blower mounted on the spinner. The test apparatus consisted essentially of a stub wing having a 5-foot chord and a 15-foot span, an engine nacelle of 20 inches diameter enclosing a 25-horsepower electric motor, and three blowers mounted on propeller spinners. Two of the blowers utilize centrifugal force while the other uses the lift from airfoils to force the air out radially through the exit slot. Maximum efficiencies of over 70 percent were obtained for the system as a whole. Pressures were measured over the entire flight range which were in excess of those necessary to cool ...
Contributing Partner: UNT Libraries Government Documents Department
Preliminary Tests of Nose- and Side- Entrance Blower Cooling Systems for Radial Engines, Special Report

Preliminary Tests of Nose- and Side- Entrance Blower Cooling Systems for Radial Engines, Special Report

Date: July 1, 1939
Creator: Biermann, David & Valentine, E. Floyd
Description: Two cowling systems intended to reduce the drag and improve the low-speed cooling characteristics of conventional radial engine cowlings were tested in model form to determine the practicability of the methods. One cowling included a blower mounted on the rear face of a large propeller spinner which drew cooling air in through side entrance ducts located behind the equivalent engine orifice plate. The air was passed through the equivalent engine orifice plate from rear to front and out through a slot between the spinner and the engine plate. The blower produced substantially all the power necessary to circulate the cooling air in some cases, so the quantity of air flowing was independent of the air speed, Two types of blowers were used, a centrifugal type and one using airfoil blades which forced the air outward from the center of rotation. The other cowling was similar to the conventional N.A.C.A. cowling except for the addition of a large propeller spinner nose. The spinner was provided with a hole in the nose to admit cooling air and blower blades to increase the pressure for cooling at low speeds. The tests show that with both cowling types the basic drag of the nacelle ...
Contributing Partner: UNT Libraries Government Documents Department
Full-Scale Tests of Several Propellers Equipped with Spinners, Cuffs, Airfoil and Round Shanks, and NACA 16-Series Sections, Special Report

Full-Scale Tests of Several Propellers Equipped with Spinners, Cuffs, Airfoil and Round Shanks, and NACA 16-Series Sections, Special Report

Date: October 1, 1940
Creator: Biermann, David; Hartman, Edwin P. & Pepper, Edward
Description: Wind-tunnel tests of several propeller, cuff, and spinner combinations were conducted in the 20 foot propeller-research tunnel. Three propellers, which ranged in diameter from 8.4 to 11.25 feet, were tested at the front end of a streamline body incorporating spinners of two diameters. The tests covered a blade angle range from 20 deg to 65 deg. The effect of spinner diameter and propeller cuffs on the characteristics of one propeller was determined. Test were also conducted using a propeller which incorporated aerodynamically good shank sections and using one which incorporated the NACA 16 series sections for the outer 20 percent of the blades. Compressibility effects were not measured, owing to the low testing speeds. The results indicated that a conventional propeller was slightly more efficient when tested in conjunction with a 28 inch diameter spinner than with a 23 inch spinner, and that cuffs increased the efficiency as well as the power absorption characteristics. A propeller having good aerodynamic shanks was found to be definitely superior from the efficiency standpoint to a conventional round-shank propeller with or without cuffs; this propeller would probably be considered structurally impracticable, however. The propeller incorporating the NACA 16 series sections at the tims were ...
Contributing Partner: UNT Libraries Government Documents Department
Intercooler Design for Aircraft, Special Report

Intercooler Design for Aircraft, Special Report

Date: September 1, 1939
Creator: Brevoort, M. J.; Joyner, U. T. & Leifer, M.
Description: When an airplane is operating at high altitude, it is necessary to use a supercharger to maintain ground pressure at the carburetor inlet. This maintenance and high intake-manifold pressure tends to keep the power output of the engine at ground-level value. The air, being compressed by the supercharger, however, is heated by adiabatic compression and friction to a temperature that seriously affect the performance of the engine. It is thus necessary to use an intercooler to reduce the temperature of the air between the supercharger outlet and the carburetor inlet. The amount of cooling required of the intercooler depend on the efficiency of the supercharger installation. In this investigation, several types of intercoolers were compared and a design procedure that will give the best intercooler for a given set of conditions is indicated. The figure of merit used for the selection of the best design was the total power consumed by the intercooler. This value includes the power required to transport the weight of the intercooler as well as the power used to force the charge air and the cooling air through the intercooler. The cost, size and practicality of construction were not considered, inasmuch as it was thought that ...
Contributing Partner: UNT Libraries Government Documents Department
Radiator Design and Installation

Radiator Design and Installation

Date: May 1, 1939
Creator: Brevoort, M.J. & Leifer, M.
Description: The fundamental principles of fluid flow, pressure losses, and heat transfer have been presented and analyzed for the case of a smooth tube with fully developed turbulent flow. These equations apply to tubes with large length-diameter ratios where the f1ow is at a high Reynolds Number. The error introduced by using these equations increases as the magnitude of the tube length and the air-flow Reynolds Number approaches the values encountered in modern radiator designs. Accordingly, heat-transfer tests on radiator sections were made and the results are presented in nondimensional form to facilitate their use and for comparison with other heat-transfer data. In addition, pressure losses were measured along smooth tubes of circular, square, and rectangular cross section and the results were also correlated and are presented in nondimensional form. The problem of a radiator design for a particular installation is solved, the experimental heat-transfer and pressure-loss data being used, on a basis of power chargeable to the radiator for form drag, for propelling the weight, and for forcing the air through the radiator. The case of an installation within a wing or an engine nacelle is considered. An illustration of radiator design is carried through for an arbitrary set of ...
Contributing Partner: UNT Libraries Government Documents Department
Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model, Special Report

Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model, Special Report

Date: April 1, 1937
Creator: Brevoort, Maurice J.
Description: In the design of a cowling a certain pressure drop across the cylinders of a radial air-cooled engine is made available. Baffles are designed to make use of this available pressure drop for cooling. The problem of cooling an air-cooled engine cylinder has been treated, for the most part, from considerations of a large heat-transfer coefficient. The knowledge of the precise cylinder characteristics that give a maximum heat-transfer coefficient should be the first consideration. The next problem is to distribute this ability to cool so that the cylinder cools uniformly. This report takes up the problem of the design of a baffle for a model cylinder. A study has been made of the important principles involved in the operation of a baffle for an engine cylinder and shows that the cooling can be improved 20% by using a correctly designed baffle. Such a gain is as effective in cooling the cylinder with the improved baffle as a 65% increase in pressure drop across the standard baffle and fin tips.
Contributing Partner: UNT Libraries Government Documents Department
Mechanical Properties of Flush-Riveted Joints

Mechanical Properties of Flush-Riveted Joints

Date: January 1, 1940
Creator: Bruggeman, Wm. C. & Roop, Frederick C.
Description: The strength of representative types of flush-riveted joints has been determined by testing 865 single-shearing, double-shearing, and tensile specimens representing 7 types of rivet and 18 types of joint. The results, presented in graphic form, show the stress at failure, type of failure, and d/t ratio. In general, 'dimpled' joints were appreciably stronger than countersunk or protruding-head joints, but their strength was greatly influenced by constructional details. The optimum d/t ratios have been determined for the several kinds of joints. Photomacrographs of each type show constructional details and, in several instances, cracks in the sheet.
Contributing Partner: UNT Libraries Government Documents Department
Method of Determining the Weights of the Most Important Simple Girders

Method of Determining the Weights of the Most Important Simple Girders

Date: December 1, 1931
Creator: Cassens, J.
Description: This paper presents a series of tables for the simple and more common types of girders, similar to the tables given in handbooks under the heading "Strength of Materials," for determining the moments, deflections, etc., of simple beams. Instead of the uniform cross section there assumed, the formulas given here apply only to girders of "uniform strength," i.e., it is assumed that a girder is so dimensioned that a given load subjects it to a uniform stress throughout its whole length. This principle is particularly applicable to very strong structures. Girders of uniform strength are the lightest girders conceivable, because any girder, all of whose members are stressed to the limit, can not be surpassed by a lighter girder, if the two girders have the same form. The weight G of a member of length l, cross section F and specific gravity gamma is: G = Flgamma.
Contributing Partner: UNT Libraries Government Documents Department
Ice Prevention on Aircraft by Means of Impregnated Leather Covers, Special Report

Ice Prevention on Aircraft by Means of Impregnated Leather Covers, Special Report

Date: August 1, 1935
Creator: Clay, William C.
Description: The National Advisory Committee for Aeronautics is testing the effectiveness of a method to prevent the formation of ice on airplanes. The system makes use of a leather cover that is attached to the leading edge of the wing. A small tube, attached to the inner surface of the leather, distributes to the leading edge a solution that permeates throughout the leather and inhibits the formation of ice on the surface. About 25 pounds of the liquid per hour would be sufficient to prevent ice from forming on a wing of 50-foot span. The additional gross weight of the system will not be excessive. The tests are not yet completed but the method is thought to be practicable for the wing and it may also be adaptable to the propeller.
Contributing Partner: UNT Libraries Government Documents Department
Tests of Wing Machine-Gun and Cannon Installations in the NACA Full-Scale Wind Tunnel, Special Report

Tests of Wing Machine-Gun and Cannon Installations in the NACA Full-Scale Wind Tunnel, Special Report

Date: August 1, 1941
Creator: Czarnecki, K. R. & Guryansky, Eugene R.
Description: At the request of the Bureau of Aeronautics, an investigation was conducted in the full-scale wind tunnel of wing installations of .50-caliber machine guns and 20-millimeter cannons. The tests were made to determine the effect of various gun installations on the maximum lift and the high-speed drag of the airplane.
Contributing Partner: UNT Libraries Government Documents Department
Pressure Distribution on the Fuselage of a Midwing Airplane Model at High Speeds

Pressure Distribution on the Fuselage of a Midwing Airplane Model at High Speeds

Date: November 1, 1939
Creator: Delano, James B.
Description: The pressure distribution on the fuselage of a midwing airplane model was measured in the NACA 8-foot high speed wind tunnel at speeds from 140 to 440 miles per hour for lift coefficients ranging from -0.2 to 1.0. The primary purpose of the tests was to provide data showing the air pressures on various parts of the fuselage for use in structural design. The data may also be used for the design of scoops and vents. The results show that the highest negative pressures occurred near the wing and were more dependent on the wing than on the fuselage. At high speeds, the magnitude of the pressure coefficients as predicted from pressure coefficients determined experimentally at low speeds by application of the theoretical factor 1/(square root)1-M(exp 2) (where M is the ratio of the air speed to the speed of sound in air) may misrepresent the actual conditions. At the points where the maximum negative pressures ocurred, however, the variation of the pressure coefficients was in good agreement with the theoretical factor, indicating that this factor may afford satisfactory predictions of critical speed, at least for fuselages similar to the shape tested.
Contributing Partner: UNT Libraries Government Documents Department
FIRST PREV 1 2 3 4 5 NEXT LAST