You limited your search to:

  Partner: UNT Libraries Government Documents Department
Transducer Signal Noise Analysis for Sensor Authentication

Transducer Signal Noise Analysis for Sensor Authentication

Date: July 1, 2012
Creator: (043887), John M. Svoboda & Schanfein, Mark J.
Description: The abstract is being passed through STIMS for submision to the conference. International safeguards organizations charged with promoting the peaceful use of nuclear energy employ unattended and remote monitoring systems supplemented with onsite inspections to ensure nuclear materials are not diverted for weaponization purposes. These systems are left unattended for periods of several months between inspections. During these periods physical security means are the main deterrent used to detect intentional monitoring system tampering. The information gathering components are locked in secure and sealed rooms. The sensor components (i.e. neutron and gamma detectors) are located throughout the plant in unsecure areas where sensor tampering could take place during the periods between inspections. Sensor tampering could allow the diversion of nuclear materials from the accepted and intended use to uses not consistent with the peaceful use of nuclear energy. A method and an apparatus is presented that address the detection of sensor tampering during the periods between inspections. It was developed at the Idaho National Laboratory (INL) for the Department of Energy (DOE) in support of the IAEA. The method is based on the detailed analysis of the sensor noise floor after the sensor signal is removed. The apparatus consists of a ...
Contributing Partner: UNT Libraries Government Documents Department
SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

Date: August 24, 2003
Creator: (1)Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N & Graves, R (2) Panov, A
Description: NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Contributing Partner: UNT Libraries Government Documents Department
RELATIONSHIP BETWEEN COMPOSITION AND TOXICITY OF ENGINE EMISSION SAMPLES

RELATIONSHIP BETWEEN COMPOSITION AND TOXICITY OF ENGINE EMISSION SAMPLES

Date: August 24, 2003
Creator: (1)Mauderly, J; Seagrave, J; McDonald & J (2)Eide,I (3)Zielinska, B (4)Lawson, D
Description: Differences in the lung toxicity and bacterial mutagenicity of seven samples from gasoline and diesel vehicle emissions were reported previously [1]. Filter and vapor-phase semivolatile organic samples were collected from normal and high-emitter gasoline and diesel vehicles operated on chassis dynamometers on the Unified Driving Cycle, and the compositions of the samples were measured in detail. The two fractions of each sample were combined in their original mass collection ratios, and the toxicity of the seven samples was compared by measuring inflammation and tissue damage in rat lungs and mutagenicity in bacteria. There was good agreement among the toxicity response variables in ranking the samples and demonstrating a five-fold range of toxicity. The relationship between chemical composition and toxicity was analyzed by a combination of principal component analysis (PCA) and partial least squares regression (PLS, also known as projection to latent surfaces). The PCA /PLS analysis revealed the chemical constituents co-varying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The results demonstrated the utility of the PCA/PLS approach, which is now being applied to additional samples, and it also provided a starting point for confirming the compounds that actually cause the ...
Contributing Partner: UNT Libraries Government Documents Department
Bulletin of the Medical Department, Brookhaven National Laboratory (1960)

Bulletin of the Medical Department, Brookhaven National Laboratory (1960)

Date: July 1, 1960
Creator: (AUI), Brookhaven National Laboratory
Description: N/A
Contributing Partner: UNT Libraries Government Documents Department
Bulletin of the Medical Department, Brookhaven National Laboratory (1961)

Bulletin of the Medical Department, Brookhaven National Laboratory (1961)

Date: July 1, 1961
Creator: (AUI), Brookhaven National Laboratory
Description: N/A
Contributing Partner: UNT Libraries Government Documents Department
Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

Date: December 1, 1998
Creator: (DOE-ID), J. T. Case & (INEEL), M. L. Renfro
Description: This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary ...
Contributing Partner: UNT Libraries Government Documents Department
Corrective action investigation plan for Corrective Action Unit 143: Area 25 contaminated waste dumps, Nevada Test Site, Nevada, Revision 1 (with Record of Technical Change No. 1 and 2)

Corrective action investigation plan for Corrective Action Unit 143: Area 25 contaminated waste dumps, Nevada Test Site, Nevada, Revision 1 (with Record of Technical Change No. 1 and 2)

Date: June 28, 1999
Creator: (DOE/NV), USDOE Nevada Operations Office
Description: This plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate correction action alternatives appropriate for the closure of Corrective Action Unit (CAU) 143 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 143 consists of two waste dumps used for the disposal of solid radioactive wastes. Contaminated Waste Dump No.1 (CAS 25-23-09) was used for wastes generated at the Reactor Maintenance Assembly and Disassembly (R-MAD) Facility and Contaminated Waste Dump No.2 (CAS 25-23-03) was used for wastes generated at the Engine Maintenance Assembly and Disassembly (E-MAD) Facility. Both the R-MAD and E-MAD facilities are located in Area 25 of the Nevada Test Site. Based on site history, radionuclides are the primary constituent of concern and are located in these disposal areas; vertical and lateral migration of the radionuclides is unlikely; and if migration has occurred it will be limited to the soil beneath the Contaminated Waste Disposal Dumps. The proposed investigation will involve a combination of Cone Penetrometer Testing within and near the solid waste disposal dumps, field analysis for radionuclides and volatile organic compounds, as well as sample collection from the waste dumps and surrounding areas for off-site ...
Contributing Partner: UNT Libraries Government Documents Department
Record of Technical Change No.1 for ``Corrective Action Decision Document for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada''

Record of Technical Change No.1 for ``Corrective Action Decision Document for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada''

Date: November 1, 1999
Creator: (DOE/NV), USDOE Nevada Operations Office
Description: This Record of Technical Change provides updates to the technical information provided in ``Corrective Action Decision Document for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada.''
Contributing Partner: UNT Libraries Government Documents Department
Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2003

Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2003

Date: June 30, 2003
Creator: (Director), Paul M. Bertsch
Description: No abstract prepared.
Contributing Partner: UNT Libraries Government Documents Department
Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase II

Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase II

Date: September 30, 2005
Creator: (EMTEC), Nick Cannell & (ORNL), Adrian S. Sabau
Description: The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phase were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental ...
Contributing Partner: UNT Libraries Government Documents Department
FIRST PREV 1 2 3 4 5 NEXT LAST