You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Decade: 1990-1999
Because of concern over global climate change, new systems are needed that produce electricity from fossil fuels and emit less CO{sub 2}. The fundamental problem with current CO{sub 2} separation systems is the need to separate dilute CO{sub 2} and pressurize it for storage or sequestration. This is an energy intensive process that can reduce plant efficiency by 9-37% and double the cost of electricity.
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.
NCPV FY 1998 Annual Report
This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) from October 1, 1997 through September 30, 1998 (FY 1998). The NCPV is part of the U.S. Department of Energy's (DOE's) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996-2000. The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy--as an industry and as an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NCPV provides leadership and support to the national program toward achieving its mission and goals.
Radioactive Waste Information for 1998 and Record-To-Date
This document presents detailed data, bar graphs, and pie charts on volume, radioactivity; isotopic identity, origin, and status of radioactive waste for calendar year 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Integrated Waste Information System.
BNL-NYSERNet ATM Project Report. Regional High Speed Network
No Description
License Application Design Selection Report, REV 01. August 1999
In December 1998, the U.S. Department of Energy (DOE) published the ''Viability Assessment of a Repository at Yucca Mountain'' (DOE 1998b). The Viability Assessment described a preliminary design of a potential repository at Yucca Mountain, Nevada, for disposal of spent nuclear fuel and high-level radioactive waste, and assessed the probable behavior of that repository design in the Yucca Mountain geologic setting. The report concluded that 'Yucca Mountain remains a promising site for a geologic repository and that work should proceed to support a decision in 2001 on whether to recommend the site to the President for development as a repository'. It also concluded that 'uncertainties remain about key natural processes, the preliminary design, and how the site and design would interact'. Recognizing that the design that was evaluated will be refined before a license application could be submitted, the Viability Aassesment notes that 'DOE is evaluating several design options and alternatives that could reduce existing uncertainty and improve the performance of the repository system'. During the preparation of the Viability Assessment, DOE asked the contractor for the Civilian Radioactive Waste Management Program to study alternative design concepts for a potential geologic repository for high-level radioactive waste at Yucca Mountain. The License Application Design Selection (LADS) project was initiated to conduct that study. The goal of the project was to develop and evaluate a diverse range of conceptual repository designs that work well in concert with the Yucca Mountain site and to recommend an initial design concept for the possible Site Recommendation and License Apllication. This report presents the results of the LADS project. The design process consisted of two phases. In Phase I, a series of basic design concepts (design alternatives) and components (design features) were analyzed for their potential value as elements of a repository design. In Phase II, these enhanced design alternatives were refined, screened for accepatable postclosure performance, and evaluated against a set of criteria addressing four broad aspects of the repository: performance demonstrability; flexibility; construction, operations and maintenance; and cost. Based on this evaluation, a conceptual design was recommended to DOE and could be characterized as a low thermal impact design. Included in the report is more in depth information regarding the basis of the recommendation, performance issues, benefits related to reduced uncertainties, construction/operational benefits, technical and programmatic flexibilty and cost impacts.
In the early 90's GE recognized the need to introduce new technology to follow on to the ''F'' technology the Company introduced in 1988. By working with industry and DOE, GE helped shape the ATS program goal of demonstrating a gas turbine, combined-cycle system using natural gas as the primary fuel that achieves the following targets: system efficiency exceeding 60% lower heating value basis; environmental superiority under full-load operating conditions without the use of post-combustion emissions controls, environmental superiority includes limiting NO{sub 2} to less than 10 parts per mission by volume (dry basis) at 15% oxygen; busbar energy costs that are 10% less than current state-of-the-art turbine systems meeting the same environmental requirements; fuel-flexible designs operating on natural gas but also capable of being adapted to operate on coal-based, distillate, or biomass fuels; reliability-availability-maintainability (RAM) that is equivalent to modern advanced power generation systems; and commercial systems that could enter the market in the year 2000.
Tank waste remediation system operational scenario
The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.
No Description
Evaluation of Quality-Assurance/Quality-Control Data Collected by the U.S. Geological Survey from Wells and Springs between the Southern Boundary of the Idaho National Engineering and Environmental Laboratory and the Hagerman Area, Idaho, 1989 through 1995
The U.S. Geological (USGS) and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, collected and analyzed water samples to monitor the water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area, Idaho. Concurrently, replicate samples and blank samples were collected and analyzed as part of the quality-assurance/quality-control program. Samples were analyzed from inorganic constituents, gross radioactivity and radionuclides, organic constituents, and stable isotopes. To evaluate the precision of field and laboratory methods, analytical results of the water-quality and replicate samples were compared statistically for equivalence on the basis of the precision associated with each result. Statistical comparisons of the data indicated that 95 percent of the results of the replicate pairs were equivalent. Blank-sample analytical results indicated th at the inorganic blank water and volatile organic compound blank water from the USGS National Water Quality Laboratory and the distilled water from the Idaho Department of Water Resources were suitable for blanks; blank water from other sources was not. Equipment-blank analytical results were evaluated to determine if a bias had been introduced and possible sources of bias. Most equipment blanks were analyzed for trace elements and volatile organic compounds; chloroform was found in one equipment blank. Two of the equipment blanks were prepared after collection and analyses of the water-quality samples to determine whether contamination had been introduced during the sampling process. Results of one blank indicated that a hose used to divert water away from pumps and electrical equipment had contaminated the samples with some volatile organic compounds. Results of the other equipment blank, from the apparatus used to filter dissolved organic carbon samples, indicated that the filtering apparatus did not affect water-quality samples.
Acid Pit Stabilization Project (Volume 1 - Cold Testing) and (Volume 2 - Hot Testing)
During the summer and fall of Fiscal Year 1997, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Treatability Study was performed at the Idaho National Engineering and Environmental Laboratory. The study involved subsurface stabilization of a mixed waste contaminated soil site called the Acid Pit. This study represents the culmination of a successful technology development effort that spanned Fiscal Years 1994-1996. Research and development of the in situ grout stabilization technique was conducted. Hardware and implementation techniques are currently documented in a patent pending with the United States Patent and Trademark Office. The stabilization technique involved using jet grouting of an innovative grouting material to form a monolith out of the contamination zone. The monolith simultaneously provides a barrier to further contaminant migration and closes voids in the soil structure against further subsidence. This is accomplished by chemical incorporation of contaminants into less soluble species and achieving a general reduction in hydraulic conductivity within the monolith. The grout used for this study was TECT-HG, a relatively dense iron oxide-based cementitious grout. The treatability study involved cold testing followed by in situ stabilization of the Acid Pit. Volume 1 of this report discusses cold testing, performed as part of a ''Management Readiness Assessment'' in preparation for going hot. Volume 2 discusses the results of the hot Acid Pit Stabilization phase of this project. Drilling equipment was specifically rigged to reduce the spread of contamination, and all grouting was performed under a concrete block containing void space to absorb any grout returns. Data evaluation included examination of implementability of the grouting process and an evaluation of the contaminant spread during grouting. Following curing of the stabilized pit, cores were obtained and evaluated for toxicity characteristic leach ing procedure protocol for the main contaminant of concern, which was mercury. In addition, the cores were evaluated for the extent of mixing of the injected grout and the contaminated soil. A postgrouting geophysical evaluation of the grouted pit is presented.
There is currently no satisfactory method for the non-destructive examination (NDE) of coatings on gas turbine parts and determination of coating thickness, for example, has to be carried out by sectioning of the component and subsequent metallographic analysis. This method, which is both time-consuming and expensive, has nevertheless been used extensively for aero-engine parts to monitor coating quality and to gather statistical information for process control. For large components from utility size gas turbines costs are high and compared with aero-engines, only a limited number of parts can be examined so that the destructive method becomes less attractive both as an inspection technique and for obtaining process control data to measure part to part variations in coating thickness, for example. During engine service protective coatings slowly degrade and this degradation process effectively controls the life of the part, particularly in situations where a thermal barrier coating (TBC) is used to protect against excessive metal temperatures. In this case growth of the oxide at the interface between the bond coat and the TBC leads to a build-up of stress in the TBC which can be relieved by a spalling of the ceramic layer and loss of the protection from the thermal barrier. In situations where the integrity of the TBC system is critical to the survival of the part, some non-destructive method of determining the degradation condition of the bond coat would clearly be advantageous. In this report the results are described of recent progress in a program to develop non-destructive methods to measure coating quality and to monitor the condition of coatings in service. The work which has formed part of the Advanced Turbine Systems (ATS) Project funded by DOE, has involved the use of eddy-current (ET) and ultrasonic (US) methods developed by SouthWest Research Institute (SwRI) who have been responsible for development of the technique.
We consider the topological susceptibility for an SU(N) gauge theory in the limit of a large number of colors, N {r_arrow} {infinity}. At nonzero temperature, the behavior of the topological susceptibility depends upon the order of the deconfining phase transition. The most interesting possibility is if the deconfining transition, at T = T{sub d}, is of second order. Then we argue that Witten's relation implies that the topological susceptibility vanishes in a calculable fashion at Td. As noted by Witten, this implies that for sufficiently light quark masses, metastable states which act like regions of nonzero {theta}--parity odd bubbles--can arise at temperatures just below T{sub d}. Experimentally, parity odd bubbles have dramatic signatures: the {eta}{prime} meson, and especially the {eta} meson, become light, and are copiously produced. Further, in parity odd bubbles, processes which are normally forbidden, such as {eta} {r_arrow} {pi}{sup 0}{pi}{sup 0}, are allowed. The most direct way to detect parity violation is by measuring a parity odd global asymmetry for charged pions, which we define.
No Description
No abstract prepared.
The mission for the Department of Energy's Office of Civilian Radioactive Waste Management is to safely manage and dispose of the nation's spent nuclear fuel and high level radioactive waste in a geologic repository. A potential site at Yucca Mountain in Nevada is being studied by the DOE. Nuclear waste is to be contained in packages which will be emplaced in the repository for thousands of years. After these manmade packages eventually degrade, the repository should continue to isolate nuclear waste from the environment. The repository is to comply with the 1982 Nuclear Waste Policy Act and its amendments. Also, the health and safety of the workers will not be compromised during the construction and operation of the repository. To investigate important technical issues inherent with the construction, operation, closure, and performance of the repository, a series of in situ experiments have been planned for the Exploratory Studies Facility (ESF) located inside Yucca Mountain. The ESF Thermal Test is an integral part of the Site Characterization Plan developed in 1988 following the Congressional mandate to evaluate only Yucca Mountain as a potential repository. The planning documented in the Site Characterization Program has evolved to include the construction of the ESF to accommodate changing needs and increased understanding of the Yucca Mountain Project. The recently updated ESF thermal testing strategy includes the Drift Scale Test (DST). The DST is more complex, longer duration and larger-scale than its predecessor--the Single Heater Test. The primary purpose of the DST is to acquire a more in-depth understanding of the coupled thermal-mechanical-hydrological-chemical processes anticipated in the rock mass surrounding the proposed repository.
Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site
The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.
Development of a Closed Loop Simulator for Poloidal Field Control in DIII-D
The design of a model-based simulator of the DIII-D poloidal field system is presented. The simulator is automatically configured to match a particular DIII-D discharge circuit. The simulator can be run in a data input mode, in which prior acquired DIII-D shot data is input to the simulator, or in a stand-alone predictive mode, in which the model operates in closed loop with the plasma control system. The simulator is used to design and validate a multi-input-multi-output controller which has been implemented on DIII-D to control plasma shape. Preliminary experimental controller results are presented.
Central Waste Complex (CWC) essential/support drawing list
Essential and supporting engineering drawings for the Central Waste Complex (CWC) are identified in this document. The purpose of the document is to describe the criteria used to identify drawings and the plan for updating and maintaining their accuracy. This document supports HNF-PRO-242 and HNF-PRO-440.
Synthesis of new high performance lubricants and solid lubricants
In our second year of funding we began the testing phase of a number of new classes of lubricants. Three different testing collaborations have already begun and a fourth one is In the works with Dr. Stephen Hsu of the National Institute of Standards and Technology. Dr. Hsu also plans to test some of the same materials for us that Shell Development is studying. With Dr. Bill Jones of NASA, we are studying the effects of branching an high temperature lubricant properties in perfluoropolyethers, Initially Bill Jones is comparing the lubrication and physical properties of perfluorotetraglyme and the following two spherical perfluoropolyethers, Note that one contains a fluorocarbon chain and the other one contains a fluorocarbon ether chain. The synthesis of these was reported in the last progress report. With Professor Patricia Thiel of Iowa State University, we are working on studies of perfluoromethylene oxide ethers and have prepared a series of four of these polyethers to study in collaboration with her research group. These perfluoromethylene oxide ethers have the best low temperature properties of any known lubricants. Thiel's group is studying their interactions with metals under extreme conditions. Thirdly, we have also begun an Interaction with W. August Birke of Shell Development Company in Houston for whom we have already prepared samples of the chlorine-substituted fluorocarbon polyether lubricants whose structures appear on page 54 of our research proposal. Each of these four structures is thought to have potential as lubricant additives to motor oils. We also have underway syntheses of other fluorine-containing branched ether lubricants. These new materials which are also promising as antifriction additives for motor oils appear ahead of the perfluoro additives as Appendix I to the progress report. Additionally for Birke and Shell Development we have at their request prepared the novel compound perfluoro salicylic acid. This synthesis was suggested by the Shell staff who thought that esters of perfluoro salicylic acid might be an excellent antifriction additive for motor oil fuels. One of the best additives currently used in motor oils is the hydrocarbon ester of salicylic acid.
GRAIL-genQuest: A comprehensive computational system for DNA sequence analysis. Final report, DOE SBIR Phase II
Recent advances in DNA sequencing and genome mapping technologies are making it possible, for the first time in history, to find genes in plants and animals and to elucidate their function. This means that diagnostics and therapeutics can be developed for human diseases such as cancer, obesity, hypertension, and cardiovascular problems. Crop and animal strains can be developed that are hardier, resistant to diseases, and produce higher yields. The challenge is to develop tools that will find the nucleotides in the DNA of a living organism that comprise a particular gene. In the human genome alone it is estimated that only about 51% of the approximately 3 billion pairs of nucleotides code for some 100,000 human genes. In this search for nucleotides within a genome which are active in the actual coding of proteins, efficient tools to locate and identify their function can be of significant value to mankind. Software tools such as ApoCom GRAIL{trademark} have assisted in this search. It can be used to analyze genome information, to identify exons (coding regions) and to construct gene models. Using a neural network approach, this software can ''learn'' sequence patterns and refine its ability to recognize a pattern as it is exposed to more and more examples of it. Since 1992 versions of GRAIL{trademark} have been publicly available over the Internet from Oak Ridge National Laboratory. Because of the potential for security and patent compromise, these Internet versions are not available to many researchers in pharmaceutical and biotechnology companies who cannot send proprietary sequences past their data-secure firewalls. ApoCom is making available commercial versions of the GRAIL{trademark} software to run self-contained over local area networks. As part of the commercialization effort, ApoCom has developed a new Java{trademark}-based graphical user interface, the ApoCom Client Tool for Genomics (ACTG){trademark}. Two products, ApoCom GRAIL{trademark} Network Edition and ApoCom GRAIL{trademark} Personal Edition, have been developed to reach two diverse niche markets in the Phase III commercialization of this software. As a result of this project ApoCom GRAIL{trademark} can now be made available to the desktop (UNIX{reg_sign}, Windows{reg_sign} 95 and Windows NT{reg_sign}, or Mac{trademark} 0S) of any researcher who needs it.
Recent studies of proton drip-line nuclei using the Berkeley gas-filled separator
The Berkeley Gas-filled Separator provides new research opportunities at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The use of this apparatus for the study of proton drip-line nuclides is discussed. Preliminary results of {sup 78}Kr bombardments of {sup 102}Pd targets at mid-target energies of 360, 375 and 385 MeV are presented. Improvements planned partially as a result of this measurement are also discussed.
A benthic carbon budget for the Continental Slope off Cape Hatteras, NC
No abstract prepared.
Development of optimal SnO{sub 2} contacts for CdTe photovoltaic applications. [Final technical report of Phase II]
During this SBIR Phase II project, we have successfully established high quality SnO{sub 2}(F) based transparent conductive oxide coatings by atmospheric pressure chemical vapor deposition technique and built a large area prototype APCVD deposition system which incorporates innovative design features. This work enhances US photovoltaic research capability and other thin film oxide related research capability.
A Large Hadron Collider Beauty experiment for precision measurements of CP violation and rare decays. LHCb technical proposal
No abstract prepared.
Trapping backstreaming ions from an x-ray converter using an inductive cell
High current electron beams have been used as x-ray drivers for x-ray radiography. Typically, several thousand amperes of electron beam current at 20 MeV is focused to a millimeter spot size on a x-ray converter. Within a single pulse, the heating of the target by the electron beam will lead to rapid desorption of surface contaminants. The space charge potential of the electron beam will pull ions out of this plasma layer upstream into the beam. These backstreaming ions can act as a focusing lens which cause the beam to be overfocused at a waist upstream. The final beam spot size on the target would then be larger than intended, and the x-ray radiography resolution is reduced. We have designed a self-biased ion trap for the Experimental Test Accelerator (ETA-II) beam by using an Advanced Test Accelerator (ATA) inductive cell to prevent the backstreaming ions from moving upstream and forming a long ion focusing channel. We have studied the effects of this type of ion trap on the final focusing of the electron beam with the ETA-II beam parameters. Simulation results will be presented.
In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries
There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO{sub 2}, LiNiO{sub 2} and LiMn{sub 2}O{sub 4} are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO{sub 2} is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO{sub 2} is isostructural with LiCoO{sub 2}. It offers lower cost and high energy density than LiCoO{sub 2}. However, it has much poorer thermal stability than LiCoO{sub 2}, in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO{sub 2} system in order to increase the thermal stability. LiMn{sub 2}O{sub 4} has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2}, LiNi{sub 0.5}Co{sub 0.5}O{sub 2}, and LiAl{sub x}Ni{sub 1-x}O{sub 2} cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery system definitely requires an in situ XRD technique to study the detail structural changes of the system during charge and discharge. The in situ XRD technique was used by Reimers, Li,and Dahn to study the LiCoO{sub 2}, LiNiO{sub 2}, and LiMn{sub 2}O{sub 4} systems. Their results of these studies have demonstrated that in situ XRD can provide more detailed information about the cathode material structural changes during charge-discharge. Conventional x-ray sources were used in these studies and the beryllium windows were used in the in situ cells. Provisions were made to prevent corrosion of the beryllium windows during charge-discharge. For this reason, the in situ cells were often designed quite differently than a real battery. More seriously, the problem of beryllium corrosion restricted the voltage range of the cell below 4.5 V. This limited the use of this technique to study the effects of overcharge which is very important to the thermal stability of the cathodes. Using the plastic lithium battery technology, Amatucci, Tarascon, and Klein constructed an in situ XRD cell, which allows structural investigations at voltages greater than 5 V without any beryllium window corrosion. However, all of these in situ XRD studies using conventional x-ray sources probe the cell in reflection geometry. Therefore, the observed structural changes are predominantly from the top few microns of the electrode coating, which might not be representative for the whole coating during charge-discharge especially when the rate is high.
Pion Interferometry in AU+AU Collisions at the AGS
Two-pion Bose-Einstein correlations have been studied using the BNL-E866 Forward Spectrometer in 11.6 A {center_dot} GeV/c Au + Au collisions. The data were analyzed using three-dimensional correlation parameterizations to study transverse momentum-dependent source parameters. The freeze-out time and the duration of emission were derived from the source radii parameters.
Photosynthetic adjustment in field-grown ponderosa pine trees after six years exposure to elevated CO{sub 2}
No abstract prepared.
Deformation mechanisms in crystalline solids and Newtonian viscous behavior
The three principal mechanisms of plastic flow in crystalline solids at elevated temperature are crystal slip, grain boundary sliding, and diffusional flow. All three mechanisms involve the diffusion of atoms as the rate-controlling process, either in the lattice or in the grain boundary. Under the correct conditions of microstructure, temperature, and stress, each mechanism can lead to Newtonian-viscous behavior. That is, the strain rate increases linearly with the applied stress. In the case of crystal slip, Newtonian-viscous behavior is observed at very � low stresses and, in pure metals, is known as Harper-Dom (H-D) creep. This Newtonian behavior can also be observed in anisotropic crystalline solids that are deformed under thermal cycling conditions. The dislocation density and the stacking fault energy are important structural factors that contribute to crystal slip-controlled Newtonian flow. In the case of grain boundary sliding, Newtonian-viscous behavior is observed in fine-grained, solid solution alloys under conditions where grain-boundary sliding is accommodated by dislocation glide controlled by the diffusion of solute atoms. In the case of diffusional creep, which is rigorously described by the Nabarro-Herring (N-H) theory, the creep rate is controlled by grain size and by the rate of atom diffusion in the lattice and in the grain boundary. Deformation mechanism maps describe the conditions of dislocation density, grain size, stress, and temperature under which each deformation process can be expected to be rate-controlling.
Standard analysis methods for processing inversion recovery MR images traditionally have used single pixel techniques. In these techniques each pixel is independently fit to an exponential recovery, and spatial correlations in the data set are ignored. By analyzing the image as a complete dataset, improved error analysis and automatic segmentation can be achieved. Here, the authors apply principal component analysis (PCA) to a series of relaxographic images. This procedure decomposes the 3-dimensional data set into three separate images and corresponding recovery times. They attribute the 3 images to be spatial representations of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) content.
Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.
Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998
Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual Review pertaining to the university consortium's activities AGTSR published and presented a paper on the status of ATS catalytic combustion R&D at the RTA/NATO Gas Turbine Combustion Symposium, October 12-16,1998 in Lisbon, Portugal IRE approved a 12-month add-on request from Penn State University to conduct an added research task in their multistage unsteady aerodynamics project AGTSR reviewed a research extension white paper from Clemson University with the IRB to conduct an added task pertaining to their mist/steam cooling research project AGTSR coordinated new research topics with the IR.Band select universities to facilitate R&D roadmapping needs at the Aero-Heat Transfer III workshop in Austin, TX AGTSR distributed FY97 research progress reports to DOE and the XRB; and AGTSR solicited new R&D topics from the IRB experts for the 1999 RFP.
I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems
No abstract prepared.
An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows.
As the sound speed is infinite for incompressible flows, computation of the pressure constitutes the stiffest component in the time advancement of unsteady simulations. For complex geometries, efficient solution is dependent upon the availability of fast solvers for sparse linear systems. In this paper we develop a Schwarz preconditioner for the spectral element method using overlapping subdomains for the pressure. These local subdomain problems are derived from tensor products of one-dimensional finite element discretizations and admit use of fast diagonalization methods based upon matrix-matrix products. In addition, we use a coarse grid projection operator whose solution is computed via a fast parallel direct solver. The combination of overlapping Schwarz preconditioning and fast coarse grid solver provides as much as a fourfold reduction in simulation time over previously employed methods based upon deflation for parallel solution of multi-million grid point flow problems.
Variability of carbon system parameters in coastal waters of the Mid-Atlantic Bight off New Jersey: A link to the Ocean Margins Program. Final technical report
No abstract prepared.
Development of Advanced Sensor Technologies for the United States Glass Industry - Final Report - 07/20/1995 - 08/19/1999
The glass industry, with support from the U.S. Department of Energy (DOE), undertook a project to significantly improve temperature measurement in glass melters, thereby reducing energy usage through improved process control. AccuTru International determined that a new kind of protective sheath would improve the life and range of applications of the temperature measuring thermocouples. In cooperation with Corning, Inc., the University of Missouri-Rolla ceramics department conducted tests on a proprietary alumina sheath technology, which shows significant promise. In addition, AccuTru obtained DOE funding to develop a self-verifying sensor. The new sensor, with alumina sheath, was tested at a Corning facility, and the results exceeded expectations. Areas for additional development efforts were identified.
Experimental validation of the wavefield transform
No abstract prepared.
A DSP based power electronics interface for alternative /renewable energy system.
This report is an update on the research project involving the implementation of a DSP-based power electronics interface for alternate/renewable energy systems, that was funded by the Department of Energy under the Inventions and Innovations program.
The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.
No abstract prepared.
This paper presents an overview of the geomechanical studies conducted at the Large Block Test at Fran Ridge, near Yucca Mountain, Nevada. The 3-dimensional geomechanical response of the rock to heating is being monitored using instrumentation mounted in boreholes and on the surface of the block. Results show that thermal expansion of the block began a few hours after the start of heating, and is closely correlated with the thermal history. Horizontal expansion increases as a linear function of height. Comparison of observed deformations with continuum simulations shows that below the heater plane deformation is smaller than predicted, while above the heater plane, observed deformation is larger than predicted, and is consistent with opening of vertical fractures. Fracture monitors indicate that movement on a large horizontal fracture is associated with hydrothermal behavior.
Site Characterization Progress Report No.20
This is the 20th progress report issued by the U.S. Department of Energy. This report provides a summary-level discussion of Yucca Mountain Site Characterization Project progress. Accomplishments this period are presented in a format that identifies important progress achieved and conveys how that progress supports the near-term objectives in the U.S. Department of Energy's schedule. Greater detail is documented in the cited references and in deliverables listed in Appendix A to this report. Readers may request specific U.S. Department of Energy-approved program documents that are listed in Section 7, References, and Appendix A by contacting the Office of Civilian Radioactive Waste Management Information Line at 1-800-225-6972. This document provides a discussion of recently completed and ongoing activities conducted by the Yucca Mountain Site Characterization Project during the six-month reporting period from October 1, 1998, through March 31, 1999. Some information presented herein is by necessity preliminary, because some deliverables and reports that support the discussions have not been finalized. Projected future deliverables and reports are listed in Appendix B and are noted in the text as works in progress. Appendix C lists the status of milestone reports referenced in previous progress reports. A glossary of Yucca Mountain Site Characterization Project-specific terms used in this report is given in Appendix D.
Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.
Private Sector Initiative Between the U.S. and Japan
OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.
Analysis and simulation for laser-Compton cooling of electron beams
The method of the Laser-Compton cooling of the electron beams is studied. Using a Monte Carlo code, we have evaluated the effects of the Laser-electron interaction for cooling. The optics with and without chromatic correction for cooling are examined. Problems of the optics for cooling are discussed.
Reactivity of Metal Ions Bound to Water-Soluble Polymers
The intent of this work is to determine the effectiveness of catalysts covalently bound to polymers and to understand the consequences of supporting the catalysts on catalyst efficiency and selectivity. Rhodium phosphine complexes with functional groups for coupling to polymers were prepared. These catalyst precursors were characterized using standard techniques including IR, NMR, and elemental analysis. Studies on the modified catalysts showed that they were still active hydrogenation catalysts. However, tethering of the catalysts to polyamines gave systems with low hydrogenation activity. Analogous biphasic systems were also explored. Phosphine ligands with a surfactant-like structure have been synthesized and used to prepare catalytically active complexes of palladium. The palladium complexes were utilized in Heck-type coupling reactions (e.g. coupling of iodobenzene and ethyl acrylate to produce ethyl cinnamate) under vigorously stirred biphasic reaction conditions, and were found to offer superior performance over a standard water-soluble palladium catalyst under analogous conditions.
324 Building fire hazards analysis implementation plan
In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7.
Real-Time Transverse Emittance and Phase-Space Monitor
A real-time multislit [1] transverse-emittance monitor has been developed for diagnosing the space-charge-dominated beam in the 10MeV injection line of the FEL at Thomas Jefferson National Accelerator Facility (formerly CEBAF). It gives emittance, Twiss parameters, and phase-space contours (without any symmetry assumptions) at the update rate of 1Hz. It reduces measurement noise in real-time, and incorporates a special algorithm for constructing the phase-space matrix, which yields more accurate results by sweeping the beam across the slits. In this paper we will discuss issues relevant to the software design and implementation. Experimental results obtained from a 250keV photocathode gun will also be presented and compared with other methods and with PARMELA simulations.
Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology
The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components.