Network maintenance July 27th between 7:30AM and 8:00AM CDT may cause service disruptions.

  You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Resource Type: Text
Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

Date: April 11, 2011
Creator: Gandy, David W. & Shingledecker, John P.
Description: Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings ...
Contributing Partner: UNT Libraries Government Documents Department
U.S. Department of Energy Report on the First Quadrennial Technology Review (QTR)

U.S. Department of Energy Report on the First Quadrennial Technology Review (QTR)

Date: September 1, 2011
Creator: Team, Quadrennial Technology Review
Description: Access to clean, affordable, secure, and reliable energy has been a cornerstone of American’s economic growth. Yet, today the Nation’s systems that produce, store, transmit, and use energy are falling short of U.S needs. The Department of Energy’s (DOE) first Quadrennial Technology Review (QTR), launched at the recommendation of the President’s Council of Advisors on Science and Technology (PCAST), addresses these facts. The report details today’s energy landscape and the associated energy security, economic and environmental challenges; provides a framework for presenting six strategies to address those challenges encompassing vehicle efficiency, deployment of alternative hydrocarbon fuels, increased building and industrial efficiency, modernization of the grid, and deployment of clean electricity; addresses priorities among activities in DOE’s energy-technology programs; and explains the roles that DOE, the broader government, the private sector, the national laboratories, and academia play in energy transformation.
Contributing Partner: UNT Libraries Government Documents Department
Final Report - Cycling of DOC and DON by novel heterotrophic and photoheterotrophic bacteria in the ocean

Final Report - Cycling of DOC and DON by novel heterotrophic and photoheterotrophic bacteria in the ocean

Date: June 10, 2011
Creator: Royer, David F.
Description: This report describes a collaboration between Lincoln University and the College of Earth, Ocean and Environment at the University of Delaware and was funded under the Department of Energy Biological Investigations – Ocean Margins Program (BI-OMP). The principal outcomes of the grant are (1) the opportunity for Lincoln students to participate in marine research at the University of Delaware, (2) the opportunity for participating students to present their research at a variety of scientific meetings, (3) the establishment of an environmental science major and a microbial ecology course at Lincoln, (4) the upgrade of research capabilities at Lincoln, and (5) the success of participating students in graduate and professional school.
Contributing Partner: UNT Libraries Government Documents Department
Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

Date: January 3, 2012
Creator: Piper, Stephen C. & Keeling, Ralph F.
Description: The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.
Contributing Partner: UNT Libraries Government Documents Department
Molecular Assemblies, Genes and Genomics Integrated Efficiently (MAGGIE)

Molecular Assemblies, Genes and Genomics Integrated Efficiently (MAGGIE)

Date: May 26, 2011
Creator: Baliga, Nitin S.
Description: Final report on MAGGIE. We set ambitious goals to model the functions of individual organisms and their community from molecular to systems scale. These scientific goals are driving the development of sophisticated algorithms to analyze large amounts of experimental measurements made using high throughput technologies to explain and predict how the environment influences biological function at multiple scales and how the microbial systems in turn modify the environment. By experimentally evaluating predictions made using these models we will test the degree to which our quantitative multiscale understanding wilt help to rationally steer individual microbes and their communities towards specific tasks. Towards this end we have made substantial progress towards understanding evolution of gene families, transcriptional structures, detailed structures of keystone molecular assemblies (proteins and complexes), protein interactions, biological networks, microbial interactions, and community structure. Using comparative analysis we have tracked the evolutionary history of gene functions to understand how novel functions evolve. One level up, we have used proteomics data, high-resolution genome tiling microarrays, and 5' RNA sequencing to revise genome annotations, discover new genes including ncRNAs, and map dynamically changing operon structures of five model organisms: For Desulfovibrio vulgaris Hildenborough, Pyrococcus furiosis, Sulfolobus solfataricus, Methanococcus maripaludis and Haiobacterium salinarum ...
Contributing Partner: UNT Libraries Government Documents Department
Final Report on NPS/CIRPAS support of DOE Classic Experiment

Final Report on NPS/CIRPAS support of DOE Classic Experiment

Date: March 7, 2011
Creator: Jonsson, Haflidi H
Description: The Department of Energy conducted the Cloud-Land Surface Interaction Campaign (CLASIC) in Poncha City Oklahoma, in June 2007. The purpose of the experiment was to study the influence of different surface conditions on properties of small cumulus clouds. The Oklahoma site provided climatologically arid surface in the western part of the state, and lush green conditions in the eastern part. The summer of 2007, however, was exceptionally wet, with flooded fields and rivers flowing over their banks. This had seriously adverse effect on the experiment. CIRPAS participated in this with its instrumented Twin Otter aircraft, flight crew and scientist. The CIRPAS instruments measured temperature, dewpoint temperature, pressure, winds, aerosol particle concentrations, aerosol size distribution, cloud droplet concentration, cloud droplet size spectra, total scatter coefficients and absorption coefficients at three different wavelengths. Additionally, CIRPAS provided measurements of aircraft location, velocity and attitude. CIRPAS reduced all the data to engineering units, quality assured the data, and submitted a coherent data set to the project’s archive. The Twin Otter flew 15 sorties from the airport in Ponca City, and characterized meteorological, aerosol and cloud conditions as well as the temperature of the underlying surface in a wide variety of conditions. Conditions ranged from ...
Contributing Partner: UNT Libraries Government Documents Department
Final Progress Report

Final Progress Report

Date: March 21, 2011
Creator: Fredeen, Amy
Description: The objective of this project was to complete the specifications and drawings for a variable speed kitchen exhaust system and the boiler heating system which when implemented will improve the heating efficiency of the building. The design work was focused in two key areas: kitchen ventilation and heating for the Ernie Turner Center building (ETC). RSA completed design work and issued a set of 100% drawings. RSA also worked with a cost estimator to put together a detailed cost estimate for the project. The design components are summarized.
Contributing Partner: UNT Libraries Government Documents Department
Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System

Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System

Date: January 17, 2011
Creator: McFarland, Eric W.
Description: The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to -Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon
Contributing Partner: UNT Libraries Government Documents Department
Fine particle exposure of prescribed fire workers in the Southeastern United States and a comparison of several particulate matter sampling methods.

Fine particle exposure of prescribed fire workers in the Southeastern United States and a comparison of several particulate matter sampling methods.

Date: July 1, 2001
Creator: Yanosky, Jeffrey, David
Description: Personal exposure concentrations of particles with aerodynamic diameter <2.5 μm (PM2.5) of prescribed fire workers were measured at two locations in the southeastern United States. Non-impacted ambient concentrations were measured as an estimate of background concentrations during burn activities. Four sampling method comparison studies were designed and performed to compare the FRM with 1) other gravimetric PM2.5 sampling methods in ambient air, 2) optical PM2.5 sampling methods in indoor air, 3) an optical sampling method (Grimm) for particles with aerodynamic diameter <10 μm (PM10) in ambient air, and 4) a gravimetric PM2.5 sampling method downwind of prescribed fires. The gravimetric PM2.5 sampling methods agreed well in ambient air (R2>0.96 for all) except for the MiniVol, the optical PM2.5 sampling methods agree less well in indoor air,(R2>0.592), the Grimm optical PM10 method agrees well in ambient air(R2>0.944 for all), and the personal method agrees well (n=9, R2=0.994) downwind of prescribed fires.
Contributing Partner: UNT Libraries Government Documents Department
ARM CLASIC ER2 CRS/EDOP

ARM CLASIC ER2 CRS/EDOP

Date: December 20, 2010
Creator: Heymsfield, Gerald
Description: Data was taken with the NASA ER-2 aircraft with the Cloud Radar System and other instruments in conjunction with the DOE ARM CLASIC field campaign. The flights were near the SGP site in north Central Oklahoma and targeted small developing convection. The CRS is a 94 GHz nadir pointing Doppler radar. Also on board the ER-2 was the Cloud Physics Lidar (CPL). Seven science flights were conducted but the weather conditions did not cooperate in that there was neither developing convection, or there was heavy rain.
Contributing Partner: UNT Libraries Government Documents Department
Final Report - Facilitating Wind Energy: Addressing Challenges around Visual Impacts, Noise, Credible Data, and Local Benefits through Creative Stakeholder Engagement

Final Report - Facilitating Wind Energy: Addressing Challenges around Visual Impacts, Noise, Credible Data, and Local Benefits through Creative Stakeholder Engagement

Date: August 4, 2011
Creator: Harvey, Kate; Field, Patrick; Fierman, Elizabeth; Raab, Dr. Jonathan & Susskind, Dr. Lawrence
Description: The project team consisting of the Consensus Building Institute, Inc., Raab Associates, Ltd., and the MIT-Harvard Program on Negotiation created a model and set of tools for building the capacity of state officials to effectively collaborate with diverse stakeholders in advancing wind development policy formation, wind facility siting, and transmission policy and siting. The model was used to enhance the ability of state officials to advance wind development in their states. Training was delivered in Cambridge, MA, in Spring 2011. The training and associated materials, including a Wind Energy Workbook, website, and simulations, is available for ongoing and widespread dissemination throughout the US.
Contributing Partner: UNT Libraries Government Documents Department
Molecular Modeling and Simulation of Aqueous Electrolyte Systems

Molecular Modeling and Simulation of Aqueous Electrolyte Systems

Date: April 5, 2011
Creator: Cummings, Peter
Description: None
Contributing Partner: UNT Libraries Government Documents Department
Regional-Scale Climate Change: Observations and Model Simulations

Regional-Scale Climate Change: Observations and Model Simulations

Date: December 14, 2010
Creator: Bradley, Raymond S. & Diaz, Henry F.
Description: This collaborative proposal addressed key issues in understanding the Earth’s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.
Contributing Partner: UNT Libraries Government Documents Department
UCSD Support for Fusion Simulation Project Planning Activity

UCSD Support for Fusion Simulation Project Planning Activity

Date: November 3, 2011
Creator: Holland, C.; Tynan, G. R. & Diamond, P. H.
Description: This document is a close-out report on work performed by UCSD researchers in support of the Fusion Simulation Project Planning Activity.
Contributing Partner: UNT Libraries Government Documents Department
Final report

Final report

Date: April 30, 2006
Creator: Weissman, Jon B
Description: High performance computational science and engineering simulations have become an increasingly important part of the scientist's problem solving toolset. A key reason is the development of widely used codes and libraries that support these applications, for example, Netlib, a collection of numerical libraries [33]. The term community codes refers to those libraries or applications that have achieved some critical level of acceptance by a user community. Many of these applications are on the high-end in terms of required resources: computation, storage, and communication. Recently, there has been considerable interest in putting such applications on-line and packaging them as network services to make them available to a wider user base. Applications such as data mining [22], theorem proving and logic [14], parallel numerical computation [8][32] are example services that are all going on-line. Transforming applications into services has been made possible by advances in packaging and interface technologies including component systems [2][6][13][28][37], proposed communication standards [34], and newer Web technologies such as Web Services [38]. Network services allow the user to focus on their application and obtain remote service when needed by simply invoking the service across the network. The user can be assured that the most recent version of the ...
Contributing Partner: UNT Libraries Government Documents Department
TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

Date: March 1, 2012
Creator: Albrecht-Schmitt, Thomas
Description: This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.
Contributing Partner: UNT Libraries Government Documents Department
Final Report for "Investigation of reaction networks and active sites in bio-ethanol steam reforming over Co-based catalysts" with all publications attached.

Final Report for "Investigation of reaction networks and active sites in bio-ethanol steam reforming over Co-based catalysts" with all publications attached.

Date: March 31, 2011
Creator: Ozkan, Umit S.
Description: This was a university-based research project in support of distributed reforming production technologies for hydrogen. Our objective was to examine the steam reforming of bio-ethanol and other related bio-derived liquids over non-precious metal catalyst systems to enable small-scale distributed hydrogen production technologies from renewable sources. The study targeted development of a catalytic system that does not rely on precious metals and that can be active in the 350-550 C temperature range, with high selectivity and high stability. To this end, we adopted a multi-prong research strategy, that included catalyst formulation and synthesis, detailed catalyst characterization, reaction kinetics and reaction engineering, molecular modeling and economic analysis studies. Our approach was an iterative one, where the knowledge gained in one aspect of the study was utilized to modify and fine-tune catalyst development. The research addressed many fundamental and inter-related phenomena involved in the catalytic steam reforming of ethanol that may not be readily studied in an industrial development setting. The outcome of the project was a catalytic system that was able to meet the DOE targets in hydrogen production, with high H{sub 2} yield, high selectivity and stability that could perform efficiently in the 350-550 C temperature range. In addition, we were ...
Contributing Partner: UNT Libraries Government Documents Department
Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

Date: May 18, 2010
Creator: Tappen, Jeffrey; Nikolich, George; Giles, Ken; Shafer, David & Kluesner, Tammy
Description: During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.
Contributing Partner: UNT Libraries Government Documents Department
CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

Date: April 11, 2011
Creator: Birgenheier, Lauren P. & Michael D. Vanden Berg,
Description: An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of ...
Contributing Partner: UNT Libraries Government Documents Department
Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants

Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants

Date: September 30, 2006
Creator: Finley, Robert
Description: The Illinois State Geological Survey and the Midwest Geological Sequestration Consortium are conducting CO{sub 2} sequestration and enhanced oil recovery testing at six different sites in the Illinois Basin. The capital and operating costs for equipment to capture and liquefy CO{sub 2} from ethanol plants in the Illinois area were evaluated so that ethanol plants could be considered as an alternate source for CO{sub 2} in the event that successful enhanced oil recovery tests create the need for additional sources of CO{sub 2} in the area. Estimated equipment and operating costs needed to capture and liquefy 68 metric tonnes/day (75 tons/day) and 272 tonnes/day (300 tons/day) of CO{sub 2} for truck delivery from an ethanol plant are provided. Estimated costs are provided for food/beverage grade CO{sub 2} and also for less purified CO{sub 2} suitable for enhanced oil recovery or sequestration. The report includes preliminary plant and equipment designs and estimates major capital and operating costs for each of the recovery options. Availability of used equipment was assessed.
Contributing Partner: UNT Libraries Government Documents Department
Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

Date: September 30, 2011
Creator: Cerimele, Guy
Description: This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the ...
Contributing Partner: UNT Libraries Government Documents Department
The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

Date: December 1, 2011
Creator: Drover, Damion, Ryan
Description: One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from ...
Contributing Partner: UNT Libraries Government Documents Department
Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

Date: July 11, 2011
Creator: Wu, Yue & Kleinhammes, Alfred
Description: In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials’ properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room ...
Contributing Partner: UNT Libraries Government Documents Department
Alternative Energy for Higher Education

Alternative Energy for Higher Education

Date: February 22, 2012
Creator: Michael Cherney, PhD
Description: This project provides educational opportunities creating both a teaching facility and center for public outreach. The facility is the largest solar array in Nebraska. It was designed to allow students to experience a variety of technologies and provide the public with opportunities for exposure to the implementation of an alternative energy installation designed for an urban setting. The project integrates products from 5 panel manufacturers (including monocrystalline, polycrystalline and thin film technologies) mounted on both fixed and tracking structures. The facility uses both micro and high power inverters. The majority of the system was constructed to serve as an outdoor classroom where panels can be monitored, tested, removed and replaced by students. As an educational facility it primarily serves students in the Creighton University and Metropolitan Community College, but it also provides broader educational opportunities. The project includes a real-time “dashboard” and a historical database of the output of individual inverters and the corresponding meteorological data for researcher and student use. This allows the evaluation of both panel types and the feasibility of installation types in a region of the country subject to significant temperature, wind and precipitation variation.
Contributing Partner: UNT Libraries Government Documents Department
FIRST PREV 1 2 3 4 5 NEXT LAST