You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Collection: National Advisory Committee for Aeronautics Collection
Effects of Ice Formations on Airplane Performance in Level Cruising Flight

Effects of Ice Formations on Airplane Performance in Level Cruising Flight

Date: May 1, 1948
Creator: Preston, G. Merritt & Blackman, Calvin C.
Description: A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.
Contributing Partner: UNT Libraries Government Documents Department
Effects of extreme surface cooling on boundary-layer transition

Effects of extreme surface cooling on boundary-layer transition

Date: October 1, 1957
Creator: Jack, J. R.; Wisniewski, R. J. & Diaconis, N. S.
Description: None
Contributing Partner: UNT Libraries Government Documents Department
Correlations Among Ice Measurements, Impingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil

Correlations Among Ice Measurements, Impingement Rates Icing Conditions, and Drag Coefficients for Unswept NACA 65A004 Airfoil

Date: February 1, 1958
Creator: Gray, Vernon H.
Description: An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.
Contributing Partner: UNT Libraries Government Documents Department
Wind tunnel force tests in wing systems through large angles of attack

Wind tunnel force tests in wing systems through large angles of attack

Date: August 1, 1928
Creator: Wenzinger, Carl J & Harris, Thomas A
Description: Force tests on a systematic series of wing systems over a range of angle of attack from minus forty-five degrees to plus ninety degrees are covered in this report. The investigation was made on monoplane and biplane wing models to determine the effects of variations of tip shape, aspect ratio, flap setting, stagger, gap, decalage, sweepback, and airfoil profile.
Contributing Partner: UNT Libraries Government Documents Department
Wind-Tunnel Investigation at a Mach Number of 2.01 of the Aerodynamic Characteristics in Combined Angles of Attack and Sideslip of Several Hypersonic Missile Configurations with Various Canard Controls

Wind-Tunnel Investigation at a Mach Number of 2.01 of the Aerodynamic Characteristics in Combined Angles of Attack and Sideslip of Several Hypersonic Missile Configurations with Various Canard Controls

Date: March 10, 1958
Creator: Robinson, R. B.
Description: An investigation of the aerodynamic characteristics of several hypersonic missile configurations with various canard controls for an angle-of-attack range from 0 deg to about 28 deg at sideslip angles of about 0 deg and 4 deg at a Mach number of 2.01 has been made in the Langley 4- by 4-foot supersonic pressure tunnel. The configurations tested were a body alone which had a ratio of length to diameter of 10, the body with a 10 deg flare, the body with cruciform fins of 5 deg or 15 deg apex angle, and a flare-stabilized rocket model with a modified Von Karman nose. Various canard surfaces for pitch control only were tested on the body with the 10 deg flare and on the body with both sets of fins. The results indicated that the addition of a flared afterbody or cruciform fins produced configurations which were longitudinally and directionally stable. The body with 5 deg fins should be capable of producing higher normal accelerations than the flared body. A l l of the canard surfaces were effective longitudinal controls which produced net positive increments of normal force and pitching moments which progressively decreased with increasing angle of attack.
Contributing Partner: UNT Libraries Government Documents Department
Tabulated Pressure Data for a Series of Controls on a 40 Deg Sweptback Wing at Mach Numbers of 1.61 and 2.01

Tabulated Pressure Data for a Series of Controls on a 40 Deg Sweptback Wing at Mach Numbers of 1.61 and 2.01

Date: November 8, 1957
Creator: Lord, D. R.
Description: An investigation has been made at Mach numbers of 1.61 and 2.01 and Reynolds numbers of 1.7 x l0(exp 6) and 3.6 x l0(exp 6) to determine the pressure distributions over a swept wing with a series of 14 control configurations. The wing had 40 deg of sweep of the quarter-chord line, an aspect ratio of 3.1, and a taper ratio of 0.4. Measurements were made at angles of attack from 0 deg to +/- 15 deg for control deflections from -60 deg to 60 deg. This report contains tabulated pressure data for the complete range of test conditions.
Contributing Partner: UNT Libraries Government Documents Department
Notes on the N.A.C.A. control force recorder

Notes on the N.A.C.A. control force recorder

Date: July 1, 1923
Creator: Reeid, H J E
Description: Emphasized here is the desirability of using recording instruments in the investigation of the characteristics of airplanes with particular reference to the National Advisory Committee for Aeronautics (NACA) control force recorder. Given here are photographs, records, and a description of the instrument developed by NACA for investigations on different types of aircraft. Described here is an instrument for recording control forces. At present, this control force recorder registers only the forces exerted on the stick. However, attachments are being designed to enable the forces on the rudder bar also to be recorded. The instrument in its final form will consist of three parts, namely, the recorder, the controller for the stick, and the controller for the rudder. The first two are in use now. The theory of operation is simple. In the controller, which is slipped over and fastened to the stick, are small electrical resistances which vary with the force applied to the handle. The recording apparatus then consists of suitable variable resistances properly connected to galvanometers whose deflections are proportional to the forces applied to the stick.
Contributing Partner: UNT Libraries Government Documents Department
Notes on the theory of the accelerometer

Notes on the theory of the accelerometer

Date: May 1, 1920
Creator: Warner, E P
Description: None
Contributing Partner: UNT Libraries Government Documents Department
Aerodynamic Effects Caused by Icing of an Unswept NACA 65A004 Airfoil

Aerodynamic Effects Caused by Icing of an Unswept NACA 65A004 Airfoil

Date: February 1, 1958
Creator: Gray, Vernon H. & vonGlahn, Uwe H.
Description: The effects of ice formations on the section lift, drag, and pitching-moment coefficients of an unswept NACA 65A004 airfoil section of 6-foot chord were studied.. The magnitude of the aerodynamic penalties was primarily a function of the shape and size of the ice formation near the leading edge of the airfoil. The exact size and shape of the ice formations were determined photographically and found to be complex functions of the operating and icing conditions. In general, icing of the airfoil at angles of attack less than 40 caused large increases in section drag coefficients (as much as 350 percent in 8 minutes of heavy glaze icing), reductions in section lift coefficients (up to 13 percent), and changes in the pitching-moment coefficient from diving toward climbing moments. At angles of attack greater than 40 the aerodynamic characteristics depended mainly on the ice type. The section drag coefficients generally were reduced by the addition of rime ice (by as much as 45 percent in 8 minutes of icing). In glaze icing, however, the drag increased at these angles of attack. The section lift coefficients were variably affected by rime-ice formations; however, in glaze icing, lift increases at high angles of attack ...
Contributing Partner: UNT Libraries Government Documents Department
Comparison of Several Methods of Cyclic De-Icing of a Gas-Heated Airfoil

Comparison of Several Methods of Cyclic De-Icing of a Gas-Heated Airfoil

Date: June 22, 1953
Creator: Gray, Vernon H. & Bowden, Dean T.
Description: Several methods of cyclic de-icing of a gas-heated airfoil were investigated to determine ice-removal characteristics and heating requirements. The cyclic de-icing system with a spanwise ice-free parting strip in the stagnation region and a constant-temperature gas-supply duct gave the quickest and most reliable ice removal. Heating requirements for the several methods of cyclic de-icing are compared, and the savings over continuous ice prevention are shown. Data are presented to show the relation of surface temperature, rate of surface heating, and heating time to the removal of ice.
Contributing Partner: UNT Libraries Government Documents Department