You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Decade: 1990-1999
 Year: 1994
8. annual national conference of black physics students -- A summary report
The primary goals of the conference were to: (1) Develop a peer/mentor network within the African-American physics community; (2) Inform African-American students in physics of the various academic and professional opportunities; and (3) Bring important academic, economic and political issues and developments in the field to the attention of the students. The conference program was designed to fulfill these goals and optimize the students` exposure to physics as a professional and its real-life applications in both industry and academia.
13. international conference on the application of accelerators in research and industry. Final performance technical report
This report summarizes attendance at the conference, describes its session subjects and other activities, names its sponsoring organizations, and references where the papers published for it may be found (in Nuclear Instruments and Methods in Physics Research Vol. B 99 (1995)).
100 Hour test of the pressurized woodchip-fired gravel bed combustor
Combustion of wood chips in a packed bed combustor for a gas turbine cogeneration system is described. A discussion on flue gas emissions and mass balances is included.
216-Day report for Tank 241-C-111, cores 58 and 59
Three core samples from tank C-111, and a field blank, were received by the 222-S laboratories. Cores 58, 59, and the field blank were analyzed in accordance with plans. A hot cell blank was analyzed at the direction of the hot cell chemist. No sample results exceeded the notification limits. Core 60 was not analyzed.
The 1994 Fermilab Fixed Target Program
This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production.
1994 International Sherwood Fusion Theory Conference
This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.
1994 Pacific Northwest Loads and Resources Study.
The 1994 Pacific Northwest Loads and Resources Study presented herein establishes a picture of how the agency is positioned today in its loads and resources balance. It is a snapshot of expected resource operation, contractual obligations, and rights. This study does not attempt to present or analyze future conservation or generation resource scenarios. What it does provide are base case assumptions from which scenarios encompassing a wide range of uncertainties about BPA`s future may be evaluated. The Loads and Resources Study is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the 1993 Pacific Northwest Loads and Resources Study, published in December 1993. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The Federal system and regional analyses for medium load forecast are presented.
1994 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.
The 1994 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration`s (BPA) planning basis for supplying electricity t6 BPA customers. The Loads and Resources Study is presented in two documents: (1) this technical appendix detailing loads and resources for each major Pacific Northwest generating utility; and (2) a summary of Federal system and Pacific Northwest region loads and resources. This analysis updates the 1993 Pacific Northwest Loads and Resources Study Technical Appendix published in December 1993. This technical appendix provides utility specific information that BPA uses in its long-range planning. It incorporates the following for each utility: (1) electrical demand-firm loads; (2) generating resources; and (3) contracts both inside and outside the region. This document should be used in combination with the 1994 Pacific Northwest Loads and Resources Study, published in December 1994, because much of the information in that document is not duplicated here. This BPA planning document incorporates Pacific Northwest generating resources and the 1994 medium load forecast prepared by BPA. Each utility`s forecasted future firm loads are subtracted from its existing resources to determine whether it will be surplus or deficit. If a utility`s resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which the utility can sell to increase revenues. Conversely, if its firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet the utility`s load.
1994 Washington State directory of Biomass Energy Facilities
This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.
35th Annual Report
The ACIR Library is composed of publications that study the interactions between different levels of government. This document is an annual report.
3D Mesh optimization methods for unstructured polyhedra: A progress report
A mesh optimization scheme allows a Lagrangian code to run problems with extreme mesh distortion by reconfiguring node and zone connectivity as the problem evolves. We have developed some 3D mesh optimization operations and criteria for applying them. These are demonstrated in a 3D Free Lagrange code being developed at LLNL. In the simplest case of a mesh or mesh subregion composed purely of tetrahedra we can maintain a Delaunay tetrahedralization. For more interesting meshes, made up of general polyhedra, a suite of optimization operations and their respective application criteria have been developed.
Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities
The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition.
ABC Technology Development Program
The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.
Abiotic reduction of aquifer materials by dithionite: A promising in-situ remediation technology
Laboratory batch and column experiments were conducted with Hanford sediments to develop the capability to predict (1) the longevity of dithionite in these systems, (2) its efficiency as a reductant of structural iron, and (3) the longevity and reactivity of the reduced iron with soluble inorganic and organic species. After an initial induction period, the loss of dithionite by disproportionation and oxidation could be described by pseudo-first-order (PFO) kinetics. Other than the initial reaction with ferric iron, the primary factor promoting loss of dithionite in this system was disproportion nation via heterogeneous catalysis at mineral surfaces. The efficiency of the reduction of structural iron was nearly 100% for the first fourth of the ferric iron, but declined exponentially with higher degrees of reduction so that 75% of the ferric iron could be reduced. This decrease in reduction efficiency probably was related to differences in the accessibility of ferric iron in the mineral particles, with iron in clay-sized particles being the most accessible and that in silt- and sand-sized particles less accessible. Flow-through column studies showed that a reduced-sediment barrier created in this manner could maintain a reducing environment.
Absorption of laser light in overdense plasmas by sheath inverse bremsstrahlung
The original sheath inverse bremsstrahlung model [P. J. Catto and R. M. More, 1977] is modified by including the vxB term in the equation of motion. It is shown that the present results axe significantly different from those derived without the vxB term. The vxB term is also important in interpreting the absorption mechanism. If the vxB term were neglected, the absorption of the light would be incorrectly interpreted as an increase in the transverse electron temperature. This would violate the conservation of the transverse components of the canonical momentum, in the case of a normally incident laser light. It is also shown that both the sheath inverse bremsstrahlung and the anomalous skin effect are limiting cases of the same collisionless absorption mechanism. Finally, results from PIC plasma simulations are compared with the absorption coefficient calculated from the linear theory.
Accelerator developments since the ZGS by ZGS people
The ZGS was a facility, as well as an organization, where people got together to pursue a common goal of doing exciting science of the day. In this note, the authors describe notable events related to accelerators and accelerator people since the closing of the ZGS program some 15 years ago. Many of the same ZGS people have been carrying out the state-of-the art accelerator work around the Laboratory with the same dedication that characterized their work in the earlier days. First the authors describe how the activities were re-organized after the closing of the ZGS, the migration of people, and the organizational evolution since that time. Doing this shows the similarity between the birth of the ZGS and the birth of the Advanced Photon Source (APS). Then, some of the accelerator work by the former ZGS people are described. These include: (1) Intense Pulsed Neutron Source (IPNS), (2) GeV Electron Microtron (GEM), (3) Wake Field Accelerator Test Facility, (4) Advanced Photon Source, and (5) IPNS Upgrade.
Acceptance criteria for interim dry storage of aluminum-clad fuels
Direct repository disposal of foreign and domestic research reactor fuels owned by the United States Department of Energy is an alternative to reprocessing (together with vitrification of the high level waste and storage in an engineered barrier) for ultimate disposition. Neither the storage systems nor the requirements and specifications for acceptable forms for direct repository disposal have been developed; therefore, an interim storage strategy is needed to safely store these fuels. Dry storage (within identified limits) of the fuels received from wet-basin storage would avoid excessive degradation to assure post-storage handleability, a full range of ultimate disposal options, criticality safety, and provide for maintaining confinement by the fuel/clad system. Dry storage requirements and technologies for US commercial fuels, specifically zircaloy-clad fuels under inert cover gas, are well established. Dry storage requirements and technologies for a system with a design life of 40 years for dry storage of aluminum-clad foreign and domestic research reactor fuels are being developed by various groups within programs sponsored by the DOE.
Acceptance test procedure for the 241-SY-101 flexible receiver gamma detector system
This Acceptance Test Procedure is for the 241-SY-101 Flexible Receiver Gamma Detector System.
Acceptance Test Report for 241-U compressed air system
This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027.
Acceptance test report, plutonium finishing plant life safety upgrade
This acceptance Test Procedure (ATP) has been prepared to demonstrate that modifications to the Fir Protection systems function as required by project criteria. The ATP will test the Fire Alarm Control Panels, Flow Alarm Pressure Switch, Heat Detectors, Smoke Detectors, Flow Switches, Manual Pull Stations, and Gong/Door By Pass Switches.
Accurate determination of transparency current in packaged semiconductor lasers and semiconductor optical amplifiers
The reliability of semiconductor laser diodes and related devices is a significant issue for their deployment in many applications, creating demand for device diagnostics applicable to packaged devices. Measurements of the transparency current density (J{sub 0}) in laser diodes and traveling-wave semiconductor optical amplifiers (SOAs) can provide such a diagnostic. It is essential, however, to measure J{sub 0} on packaged devices, so that they can be characterized after aging or degradation. This precludes techniques requiring data from multiple devices (e.g., an ensemble with different lengths). J{sub 0} is conventionally measured using a junction-voltage technique, in which an input optical signal induces a change in carrier density in the active region due to stimulated absorption or emission. The result is a voltage drop across the diode. At material transparency, the stimulated absorption is exactly balanced by the stimulated emission and the voltage drop goes to zero. Since the polarity of the voltage drop changes sign at current densities above J{sub 0}, the optical input beam is typically modulated and lock-in amplification is employed to sensitively detect the polarity sign flip. Here we show that this technique is not reliable for certain types of laser structures, because the deduced J{sub 0} is strongly dependent on device packaging -- that is, the measured J{sub 0} varies with the manner in which light is coupled into the diode waveguide. For packaged SOAs, we propose and demonstrate an alternative all-optical technique to overcome this problem. One important advantage of the optical method over the junction voltage method is that the actual device optically-guided mode is directly sampled. In the case of packaged semiconductor lasers, our all-optical method can complement the junction-voltage method to resolve device versus packaging degradation.
An accurate, efficient algorithm for calculation of quantum transport in extended structures
In device structures with dimensions comparable to carrier inelastic scattering lengths, the quantum nature of carriers will cause interference effects that cannot be modeled by conventional techniques. The basic equations that govern these ``quantum`` circuit elements present significant numerical challenges. The authors describe the block recursion method, an accurate, efficient method for solving the quantum circuit problem. They demonstrate this method by modeling dirty inversion layers.
Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)
The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.
Acoustically enhanced remediation of contaminated soil and ground water
This program systematically evaluates the use of acoustic excitation fields (AEFs) to increase fluid and contaminant extraction rates from a wide range of unconsolidated soils. Successful completion of this program will result in a commercially-viable, advanced in-situ remediation technology that will significantly reduce clean-up times and costs. This technology should have wide applicability since it is envisioned to augment existing remediation technologies, such as traditional pump and treat and soil vapor extraction, not replace them. The overall program has three phases: Phase 1--laboratory scale parametric investigation; Phase 2--technology scaling study; Phase 3--field demonstration. Phase 1 of the program, corresponding to this period of performance, has as its primary objectives to provide a laboratory-scale proof of concept, and to fully characterize the effects of AEFs on fluid and contaminant extraction rates in a wide variety of soil types. The laboratory measurements of the soil transport properties and process parameters will be used in a computer model of the enhanced remediation process. A Technology Merit and Trade Study will complete Phase 1.
Actinide cation-cation complexes
The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO{sub 2}{sup +}) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO{sub 2}{sup +}; therefore, cation-cation complexes indicate something unique about AnO{sub 2}{sup +} cations compared to actinide cations in general. The first cation-cation complex, NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO{sub 2}{sup +} species, the cation-cation complexes of NpO{sub 2}{sup +} have been studied most extensively while the other actinides have not. The only PuO{sub 2}{sup +} cation-cation complexes that have been studied are with Fe{sup 3+} and Cr{sup 3+} and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, NpO{sub 2}{sup +}{center_dot}Th{sup 4+}, PuO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, and PuO{sub 2}{sup +}{center_dot}Th{sup 4+} at an ionic strength of 6 M using LIPAS are 2.4 {plus_minus} 0.2, 1.8 {plus_minus} 0.9, 2.2 {plus_minus} 1.5, and {approx}0.8 M{sup {minus}1}.
Actinide(IV) and actinide(VI) carbonate speciation studies by PAS and NMR spectroscopies; Yucca Mountain Project: Milestone report 3031-WBS
Pulsed-laser photoacoustic spectroscopy (PAS) and Fourier-transform nuclear magnetic resonance (NMR) spectroscopy were used to study speciation of actinide(IV) and actinide(VI) ions (Np, Pu, Am) in aqueous carbonate solutions vs pH, carbonate content, actinide content, temperature. PAS focused on Pu(IV) speciation. Stability fields on a pH (8.4 to 12.0) versus total carbonate content (0.003 to 1.0 M) plot for dilute Pu(IV) carbonate species ([Pu]{sub tot} = 1 mM) were mapped. Four plutonium species, with absorption peaks at 486, 492, 500, and 512 nm were found. Loss of a single carbonate ligand does not account for the difference in speciation for the 486 and 492 nm absorption peaks, nor can any of the observed species be identified as colloidal Pu(IV). NMR data have been obtained for UO{sub 2}{sup 2+}, PuO{sub 2}{sup 2+} and AmO{sub 2}{sup 2+}. This report focuses on results for PuO{sub 2}{sup 2+}. The ligand exchange reaction between free and coordinated carbonate on the PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} systems has been examined by variable temperature {sup 13}C NMR spectroscopy. In each of the six different PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} samples, two NMR signals are present, one for the free carbonate ligand and one for the carbonate ligand coordinated to a paramagnetic plutonium metal center. The single{sup 13}C resonance line for coordinated carbonate is consistent with expectations of a monomeric PuO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} species in solution. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was used for determining ligand exchange parameters for paramagnetic actinide complexes. Eyring analysis at standard conditions provided activation parameters of {Delta}H = 38 KJ/M and {Delta}S = {minus}60 J/K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl(VI) carbonate complex self-exchange reaction.
Activities of ZGS people in the 1980`s and 1990`s
The ZGS people went off in every direction: to universities, to other laboratories, to universities and laboratories in other countries, and to other occupations in the private sector or federal agencies. Some people even cycled around through one or more of the above and eventually would up back to Argonne. As a good pupil of the David Manson school of weasel words. I recognize the need to insert a {open_quotes}to the best of my knowledge{close_quotes} disclaimer statement here. It became clear to me that I couldn`t vouch for the accuracy of all of the information shown below when, to my surprise and delight, I found on the official registration list for this conference the names of people I really, really, never expected to see again!
Adaptive measurement control for calorimetric assay
The performance of a calorimeter is usually evaluated by constructing a Shewhart control chart of its measurement errors for a collection of reference standards. However, Shewhart control charts were developed in a manufacturing setting where observations occur in batches. Additionally, the Shewhart control chart expects the variance of the charted variable to be known or at least well estimated from previous experimentation. For calorimetric assay, observations are collected singly in a time sequence with a (possibly) changing mean, and extensive experimentation to calculate the variance of the measurement errors is seldom feasible. These facts pose problems in constructing a control chart. In this paper, the authors propose using the mean squared successive difference to estimate the variance of measurement errors based solely on prior observations. This procedure reduces or eliminates estimation bias due to a changing mean. However, the use of this estimator requires an adjustment to the definition of the alarm and warning limits for the Shewhart control chart. The authors propose adjusted limits based on an approximate Student`s t-distribution for the measurement errors and discuss the limitations of this approximation. Suggestions for the practical implementation of this method are provided also.
Adhesive Bonding of Polymeric Materials for Automotive Applications
In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative research program with the Automotive Composites Consortium (ACC) to develop technologies that would overcome obstacles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures. By reducing the weight of current automobiles, greater fuel economy and reduced emissions can be achieved. The bonding of similar and dissimilar materials was identified as being of primary importance since this enabling technology gives designers the freedom to choose from an expanded menu of low-mass materials for structural component weight reduction. Early in the project`s conception, five key areas were identified as being of primary importance to the automotive industry.
Adiabatic theory of Wannier threshold laws and ionization cross sections
The Wannier threshold law for three-particle fragmentation is reviewed. By integrating the Schroedinger equation along a path where the reaction coordinate R is complex, anharmonic corrections to the simple power law are obtained. These corrections are found to be non-analytic in the energy E, in contrast to the expected analytic dependence upon E.
Adsorption air conditioner for electric vehicle applications. Revision 1
This paper shows an analysis of the applicability of an adsorption system for electric vehicle (EV) air conditioning. Adsorption systems are designed and optimized to provide the required cooling for four combinations of vehicle characteristics and driving cycles. The resulting adsorption systems are compared with vapor compression air conditioners that can satisfy the cooling load. The objective function is the overall system weight, which includes the cooling system weight and the weight of the battery necessary to provide energy for air conditioner operation. The system with the minimum overall weight is considered to be the best, because a lower weight results in an increased vehicle range. The results indicate that, for the conditions analyzed in this paper, vapor compression air conditioners are superior to adsorption systems not only because they are lighter, but also because they have a higher COP and are more compact.
Advanced characterization of forms of chlorine, organic sulfur, and trace elements in available coals from operating Illinois mines. [Quarterly] technical report, September 1--November 30, 1994
A set of 34 as-shipped coal samples from operating Illinois mines is available for this study to determine the forms of chlorine and sulfur and leachability of chlorine during wet grinding and froth flotation. The forms of chlorine may be inorganic, ionic, and organic. The forms of organic sulfur will include organic sulfide and thiophenic sulfur. Chlorine can be leached from coal during wet grinding. The potential for removal of chlorine from the samples during fine ({minus}200 mesh) and ultrafine ({minus}400 mesh) wet-grinding and during froth flotation designed primarily for removal of pyrite and ash will be determined. In addition, the organic/inorganic affinities of trace elements in as-shipped Illinois coals will be assessed so that the current physical coal cleaning results may be better interpreted.
Advanced coal liquefaction: Quarterly report, final, October 1, 1994--December 31, 1994
A carbon-coated membrane has been identified as an alternative to overcome the degradation of the solvent, tetralin, which resulted in plugging the porous structure of the membrane. In this quarter, the authors have established a carbon coating facility and performed a coating study. This quarterly report summarizes the results, describing the facility assembly, the operating conditions for carbon coating, and characterization before and after coating. Membranes are to be used for the upgrading study.
Advanced computational methods for nodal diffusion, Monte Carlo, and S{sub n} problems. Final Report
The work addresses basic computational difficulties that arise in the numerical simulation of neutral particle radiation transport: discretized radiation transport problems, iterative methods, selection of parameters, and extension of current algorithms.
Advanced direct coal liquefaction concepts. Final report, Volume 2
Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).
Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1994--June 1994
The technical approach of the contract has been expanded to provide additional economic evaluation of related process options. Additional data will be developed in the following areas to facilitate these evaluations. The effect of several modified pretreatments on liquefaction will be investigated. These include catalytic and thermal dewaxing of distillate solvents, the effect that adding light resid to distillate solvent has on hydrotreating and dewaxing, the liquefaction behavior of dense-media separated low-rank coals, and methods of selectively removing oxygen from low-rank coals. Additional chemical, physical, and performance information on improved first-stage catalysts will be developed. Upgrading of ash concentrate to recover catalysts and improve low-rank coals will be assessed. The conversion of residual fractions to distillate by hydropyrolysis will be evaluated. The economic impact of these processes will be determined.
Advanced electrorefiner design
This invention relates to a process and apparatus for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium and a mixture of uranium and plutonium for use as fresh blanket and core fuel in a nuclear reactor. A combination anode and cathode is described for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl{sub 3} to UCl{sub 3} ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode.
Advanced far infrared detector and double donor studies in Ge
This has application to astronomy and astrophysics. Selenium in Ge has been studied with a doping technique which limits complex formation. Only one ionization level has been found to correspond to selenium, which presumably occupies a substitutional site. This level is extremely unstable and its concentration decreases after annealing at 400C. Future work is planned to anneal the fast neutron damage before much selenium has formed in the {sup 74/76}Ge samples. It is expected that the observed selenium level can be better characterized and the missing selenium level is more likely to be discovered if other defects are removed before {sup 77}Se formation.
Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report
The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potential to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.
Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 2, Subtask 2.2: Design optimization
The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed that the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.
Advanced in-duct sorbent injection for SO{sub 2} control. Topical report number 3, Subtask 2.3: Sorbent optimization
The objective of this research project is to develop second-generation duct injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific process performance goals are to achieve 90% SO{sub 2} removal and 60% sorbent utilization efficiency. Research is focused on the Advanced Coolside process, which has shown the potential of achieving these targets. The objective of Subtask 2.3, Sorbent Optimization, was to explore means of improving performance and economics of the Advanced Coolside process through optimizing the sorbent system. Pilot plant tests of commercial and specially prepared hydrated limes showed that the process is relatively insensitive to sorbent source. This can be an important economic advantage, allowing the use of the lowest cost sorbent available at a site. A pilot plant hydration study conducted in cooperation with Dravo Lime Company further indicated the relative insensitivity of process performance to lime source and to lime physical properties. Pilot plant tests indicated that the use of very small amounts of additives in the Advanced Coolside process can improve performance under some circumstances; however, additives are not necessary to exceed process performance targets.
Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 4, Task 3, Optimized advanced process evaluation
The objective of this research project is to develop second- generation duct injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific performance targets are 90% SO{sup 2} removal and 60% sorbent utilization efficiency. Research focused on the Advanced Coolside process, which showed the potential for exceeding these targets. The objective of Subtask 3.1, Performance Testing, was to develop process performance and operability data for design and scale-up of the optimized Advance Coolside process. Results of long-term pilot plant testing with 24 hour/day operation provided a positive indication of process operability. The objective of Subtask 3.2, Waste Characterization, was to determine the chemical and physical properties of the waste materials for designing the waste handling and disposal systems for the process. Test results show that the combined spent sorbent and fly ash waste is suitable for landfilling. Further, the waste management study indicated a potential for by-product utilization for synthetic aggregate production; a more thorough investigation of this potential is required.
Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 5, Task 4: Data analysis and computer modeling
The objective of this research project is to develop a second generation in-duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific performance targets are 90% SO{sub 2} removal and 60% sorbent utilization efficiency. After initial results indicated that the Advanced Coolside process had a potential of exceeding these targets, research focused on the Advanced Coolside process. For Task 4, Data Analysis and Computer Modeling, the objective was to develop two computer models. The first computer model would correlate sorbent properties with hydration parameters, while the second would correlate desulfurization performance with the sorbent properties. A two-level factorial program was undertaken to examine the effects of selected hydration process variables on some of the physical and chemical properties of the hydrates produced and on their SO{sub 2} reactivity. A bench-scale hydrator was used to convert quicklime samples to hydrated limes under controlled processing conditions. Two quicklimes were hydrated -- Mississippi Lime and Black River Lime. Significant differences in physical properties of these hydrates were observed. However, no relationship between the measured physical properties and the SO{sub 2} reactivity was observed. Within the scope of this work, SO{sub 2} reactivity is not a function of quicklime source. When compared with commercial hydrates prepared from the same quicklime, the hydrates produced in the bench-scale unit showed significantly lower surface areas and SO{sub 2} reactivities. As a result, the correlations developed in this study do not apply to commercial hydrates.
Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 6, Task 5: Conceptual commercial process design and economic evaluation
The objective of this research project is the development of a second generation in-duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research focused on the Advanced Coolside Process, which has shown the potential of exceeding the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Task 5, Conceptual Process Design and Economic Evaluation, the economics of the CONSOL Advanced Coolside Process as a Clean Air Act compliance option were evaluated. A conceptual process design for full-scale, coal-fired applications is described. Advanced Coolside is compared to conventional Limestone Forced Oxidation (LSFO) wet FGD technology. The process economics for coal sulfur levels ranging from 1.0% to 3.5% (as-received) and plant sizes ranging from 160 to 512 gross MW were investigated, In addition, the economics of on-site versus off-site lime hydration and the cost sensitivity to delivered pebble lime and hydrate prices are investigated, Advanced in-duct sorbent injection enjoys a capital and levelized cost advantage relative to LSFO in all cases examined in this study. As a result of this study and others made during this contract, the following conclusions can be made: (1) The capital cost of Advanced Coolside is 55% to 60% less than that of LSFO and varies slightly depending on coal sulfur content and plant size. (2) The total levelized SO{sub 2} control cost advantage relative to LSFO varies from 15% to 35% over the range of coal sulfur contents and plant sizes evaluated. This cost advantage is sensitive to sorbent transportation charges. As a result, the economics are site-specific. (3) The experimental optimizations based on interim economic analyses were the key to capital and levelized cost reductions.
Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems
Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.
Advanced materials, strands, and conductors for particle accelerators. Technical report for the year 1994
The authors research for the Division of High Energy Physics (HEP) began with studies of both the superconducting and matrix components of multifilamentary composites, viz (1) attempts to increase the flux-pinning strength in NbTi, and (2) a method of suppressing proximity effect coupling in fine-filament strands. The latter was fully successful, and stands ready to be invoked as soon as the need arises to: (a) very closely space the filaments in the interests of quality, or (b) re-introduce fine-filament composites for strand-magnetization reduction or AC-loss minimization. But there were also many spin-offs during the life of the program, as indicated in the complete list of publications (copy available on request). For instance, the various other effects and properties that were studied and published over the period of this association with HEP include: (i) reduction in T{sub c} due to proximity effect between thin {alpha}phase precipitates and the NbTi matrix, (ii) critical field enhancement with reduction of filament diameter in fine-filament composites, (iii) studies and systematics of AC loss in composite strands, (iv) compensation of strand magnetization by means of Ni plating or filament substitution, (v) hysteretic loss due to surface pinning in multifilamentary NbTi, (vi) flux creep in SSC-type strands, (vii) temperature and field dependence of eddy current decay, (vii) influence of Mn doping on the properties of NbTi, (viii) transverse and longitudinal resistivities (including a size-effect contribution) in strands with various filament/matrix configurations.
Advanced metering techniques in the federal sector
The lack of utility metering in the federal sector has hampered introduction of direct billing of individual activities at most military installations. Direct billing will produce accountability for the amount of energy used and is a positive step toward self-directed energy conservation. For many installations, automatic meter reading (AMR) is a cost-effective way to increase the number of meters while reducing labor requirements and providing energy conservation analysis capabilities. The communications technology used by some of the AMR systems provides other demand-side management (DSM) capabilities. This paper summarizes the characteristics and relative merits of several AMR/DSM technologies that may be appropriate for the federal sector. A case study of an AMR system being installed at Fort Irwin, California, describes a cost-effective two-way radio communication system used for meter reading and load control.
Advanced Neutron Source enrichment study
A study has been performed of the impact on performance of using low enriched uranium (20% {sup 235}U) or medium enriched uranium (35% {sup 235}U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% {sup 235}U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology.
Advanced physical coal cleaning to comply with potential air toxic regulations. [Quarterly] technical report, September 1--November 30, 1994
This research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Trace elements considered in this project will include mercury, selenium, cadmium, and chlorine. Work in the first quarter has focused on trace element analysis procedures and sample acquisition. Several experts in the field of trace element analysis of coal have been consulted and these procedures are presently being evaluated.
Advanced technologies for decontamination and conversion of scrap metals
Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC`s rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines.