You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Decade: 1990-1999
1.2 MW klystron for Asymmetric Storage Ring B Factory
A cw klystron operating at 476 MHz has been developed jointly by SLAC and Varian Associates. The unique set of characteristics of this tube were strongly guided by requirements of the fast feedback necessary to prevent oscillations of the storage ring beams caused by the detuned accelerating cavity. This requires a combination of bandwidth and short group delay within the klystron. The RF feedback stabilization scheme also requires amplitude modulation making it necessary to operate the klystron about 10% below saturation. Performance specifications and initial operating results are presented. Site system engineering implementation Fiscal Year 1998 multi-year work plan
Manage the Site Systems Engineering process to provide a traceable, integrated, requirements-driven, and technically defensible baseline., Through the Site Integration Group, Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering`s primary interfaces are with the Project Direction Office and with the projects, as well as with the Planning organization.
1.8.3 Site system engineering FY 1997 program plan
The FY 1997 Multi-Year Work Plan (MYWP) technical baseline describes the functions to be accomplished and the technical standards that govern the work. The following information is provided in this FY 1997 MYWP: technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year.
1-GeV Linac Upgrade Study at Fermilab
A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H{sup -} beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce {approximately}10{sup 14} protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given.
1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents
Excitation functions have been measured for complex fragment emission from the compound nucleus {sup 98}Mo, produced by the reaction of {sup 86}Kr with {sup 12}C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are {approximately} 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from {sup 90}Mo and {sup 94}Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs.
2-1/2-D electromagnetic modeling of nodular defects in high-power multilayer optical coatings
Advances in the design and production of high damage threshold optical coatings for use in mirrors and polarizers have been driven by the design requirements of high-power laser systems such as the proposed 1.8-MJ National Ignition Facility (NIF) and the prototype 12- kJ Beamlet laser system. The present design of the NIF will include 192 polarizers and more than 1100 mirrors. Currently, the material system of choice for high-power multilayer optical coatings with high damage threshold applications near 1.06 {mu}m are e-beam deposited HfO{sub 2}/Si0{sub 2} coatings. However, the optical performance and laser damage thresholds of these coatings are limited by micron-scale defects and insufficient control over layer thickness. In this report, we will discuss the results of our 2-1/2-D finite-element time- domain (FDTD) EM modeling effort for rotationally-symmetric nodular defects in multilayer dielectric HR coatings. We have added a new diagnostic to the 2-1/2-D FDTD EM code, AMOS, that enables us to calculate the peak steady-state electric fields throughout a 2-D planar region containing a 2-D r-z cross-section of the axisymmetric nodular defect and surrounding multilayer dielectric stack. We have also generated a series of design curves to identify the range of loss tangents for Si0{sub 2} and HfO{sub 2} consistent with the experimentally determined power loss of the HR coatings. In addition, we have developed several methods to provide coupling between the EM results and the thermal-mechanical simulation effort.
(02.2) Scoping experiments; (02.3) long-term corrosion testing and properties evaluation of candidate waste package basket material
The work described in this activity plan addresses Information Need 2.7.3 of the Yucca Mountain Site Characterization Plan (l), which reads Determination that the design criteria in lOCFR60.130 through 60.133 and any appropriate additional design objectives pertaining to criticality control have been met. This work falls under section WBS 2 (Basket Materials) of WBS (Waste Package Materials) in the Work Breakdown Structure of the Yucca Mountain Site Characterization Project.
The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid
Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.
2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks
A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the core toroidal rotation is co-moving with the inductive plasma current and when the ion {triangledown}B-drift is towards the single-null X-point.
2-D Finite Element Cable and Box IEMP Analysis
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
2-D image segmentation using minimum spanning trees
This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.
2-D linear motion system. Innovative technology summary report
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However, for areas over approximately 600 m{sup 2}, the Wall Walker would cost less than the baseline. Using the Wall Walker 2-D LMS, ALARA exposure and worker safety is improved, and there is potential for increased productivity. This innovative technology performed better than the baseline by providing real-time monitoring of the tool or instrument position. Also, the Wall Walker 2-D LMS can traverse any two-dimensional path at constant speeds of up to 18.3 linear meters per minute (60 linear feet per minute). The survey production rate for the innovative technology was about 0.6 m{sup 2}/min (6 ft{sup 2}/min); the baseline production rate was approximately 0.3 m{sup 2}/min (3 ft{sup 2}/min), using the same surveying instrument and maximum scanning rate.
N = 2 string amplitudes
In physics, solvable models have played very important roles. Understanding a simple model in detail teaches us a lot about more complicated models in generic situations. Five years ago, C. Vafa and I found that the closed N = 2 string theory, that is a string theory with the N = 2 local supersymmetry on the worldsheet, is classically equivalent to the self-dual Einstein gravity in four spacetime dimensions. Thus this string theory is solvable at the classical level. More recently, we have examined the N = 2 string partition function for spacial compactifications, and computed it to all order in the string perturbation expansion. The fact that such computation is possible at all suggests that the N = 2 string theory is solvable even quantum mechanically.
A 2 to 4 nm high power FEL on the SLAC linac
We report the results of preliminary studies of a 2 to 4 nm SASE FEL, using a photoinjector to produce the electron beam, and the SLAC linac to accelerate it to an energy up to 10 GeV. Longitudinal bunch compression is used to increases ten fold the peak current to 2.5 kA, while reducing the bunch length to the subpicosecond range. The saturated output power is in the multi-gigawatt range, producing about 10{sup 14} coherent photons within a bandwidth of about 0.2% rms, in a pulse of several millijoules. At 120Hz repetition rate the average power is about 1 W. The system is optimized for x-ray microscopy in the water window around 2 to 4 nm, and will permit imaging a biological sample in a single subpicosecond pulse.
3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis
The vacuum chamber proposed for the storage ring of the 7-GeV Advanced Photon Source (APS) basically consists of two parts: the beam chamber and the antechamber, connected to each other by a narrow gap. A sector of 1-meter-long chamber with dosed end plates, to which are attached the 1-inch-diameter beampipes centered at the beam chamber, has been built for experimental purposes. The 3-D code MAFIA has been used to simulate the frequency-domain behaviors of EM fields in this setup. The results are summarized in this note and are compared with that previously obtained from 2-D simulations and that from network analyzer measurements. They are in general agreement. A parallel analysis in the time-domain is reported in a separate note. The method of our simulations can be briefly described as follows. The 1-inch diameter beampipes are terminated by conducting walls at a length of 2 cm. The whole geometry can thus be considered as a cavity. The lowest RF modes of this geometry are computed using MAFIA. The eigenfrequencies of these modes are a direct output of the eigenvalue solver E3, whereas the type of each mode is determined by employing the postprocessor P3. The mesh sizes are chosen such that they are small enough for computations in the frequency region in which we are interested (the sampling theorem), while the total number of mesh points is still well within the range that our computer system can cope with.
3-D electromagnetic modeling of wakefields in accelerator components
We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.
3-D Finite Element Analyses of the Egan Cavern Field
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
A 3-d modular gripper design tool
Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.
A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry
A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.
3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. 1998 annual progress report
'The overall objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. Three specific objectives towards this end are: (1) understanding IP at the laboratory level through measurements of complex resistivity as a function of frequency in rock and soil samples with varying pore geometries, pore fluid conductivities and saturations, and contaminant chemistries and concentrations; (2) developing effective data acquisition techniques for measuring the critical IP responses (time domain or frequency domain) in the field; (3) developing modeling and inversion algorithms that permit the interpretation of field IP data in terms of subsurface geology and contaminant plume properties. The authors laboratory experiments to date are described in Appendices A and B, which consist of two papers submitted to the annual SAGEEP conference (Frye et al., 1998; Sturrock et al., 1998). The experiments involved measurements of complex resistivity vs. frequency on a suite of brine saturated sandstone samples. In one set of experiments, the fluid chemistry (pH, ionic strength, and cation type) was varied. In a second set of experiments, the microgeometry of the rock matrix was varied. The experiments showed that spectral IP responses are sensitive to subtle variations in both the solution chemistry and rock microgeometry. The results demonstrate that spectral IP responses have the potential of being sensitive indicators of in-situ chemistry and microgeometry, the latter of which may be related to the hydraulic properties. Data Acquisition The authors have been looking in some detail at the effects of electromagnetic coupling and how to practically deal with it. In this area, the results to date are summarized in Vandiver (1998). The progress in the development of modeling and inversion algorithms for IP is described in Appendix C, a paper submitted to the annual SAGEEP conference (Shi et al., 1998). The authors have developed algorithms for forward modeling and inversion of spectral IP data in 3-D media. The algorithms accommodate a general earth model with a complex electrical conductivity as a function of frequency and 3-D spatial position. Using regularization and optimization techniques, the inversion algorithm obtains a 3-D image of resistivity amplitude and phase for each frequency contained in the data set. They have begun testing their algorithms on synthetic data generated from a simple model of a contaminant plume. The complex resistivity parameters of the background medium and plume are based on the laboratory results described above.'
3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. Annual progress report, September 15, 1996--September 14, 1997
'The objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. The first-year accomplishments are (1) laboratory experiments on fluid-saturated sandstones quantifying the dependence of spectral IP responses on solution chemistry and rock micro-geometry; (2) library research on the current understanding of electromagnetic coupling effects on IP data acquired in the field: and (3) development of prototype forward modeling and inversion algorithms for interpreting IP data in terms of 3-D models of complex resistivity.'
3-D Target Location from Stereoscopic SAR Images
SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.
3-D woven, mullite matrix, composite filter
Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1996 pilot scale demonstration in one of the two hot gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and II) objective is to develop and demonstrate the suitability of the Westinghouse/Techniweave next generation composite candle filter for use in Pressurized Fluidized Bed Combustion (PFBC) and/or Integrated Gasification Combined Cycle (IGCC) power generation systems. The Optional Task (Phase M, Task 5) objective is to fabricate, inspect and ship to Wilsonville Hot gas particulate filters are key components for the successful commercializaion of advanced coal-based power-generation systems such as Pressurized Fluidized-bed Combustion (PFBC), including second-generation PFBC, and Integrated Gasification Combined Cycles (IGCC). Current generation monolithic ceramic filters are subject to catastrophic failure because they have very low resistance to crack propagation. To overcome this problem, a damage-tolerant ceramic filter element is needed.
3-dimensional wells and tunnels for finite element grids
Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.
3(omega) damage threshold evaluation of final optics components using Beamlet mule and off-line testing
A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.
4.5 Meter high level waste canister study
The Tank Waste Remediation System (TWRS) Storage and Disposal Project has established the Immobilized High-Level Waste (IBLW) Storage Sub-Project to provide the capability to store Phase I and II BLW products generated by private vendors. A design/construction project, Project W-464, was established under the Sub-Project to provide the Phase I capability. Project W-464 will retrofit the Hanford Site Canister Storage Building (CSB) to accommodate the Phase I I-ILW products. Project W-464 conceptual design is currently being performed to interim store 3.0 m-long BLW stainless steel canisters with a 0.61 in diameter, DOE is considering using a 4.5 in canister of the same diameter to reduce permanent disposal costs. This study was performed to assess the impact of replacing the 3.0 in canister with the 4.5 in canister. The summary cost and schedule impacts are described.
5-Volt and 4.6 V plateaus in LiMn{sub 2}O{sub 4} thin films
Additional plateaus with median voltages of {similar_to}4.6 V, and {similar_to}5 V have been observed on charging thin film lithium batteries with crystalline LiMn{sub 2}O{sub 4} cathodes to 5.3 V. Total charge extracted from the 4 V and the two additional plateaus corresponded to about 1Li/Mn{sub 2}O{sub 4}, but the distribution of capacity among the three plateaus varied from film to film. It is speculated that the additional plateaus result from formation of mixed spinel structures in which a fraction of the 8a sites areoccupied by Mn{sup 2+} or Mn{sup 4+} ions and a fraction of the Li{sup +} ions occupy the 16d sites. After charging to 5.3 V, the 4.6 V plateau disappeared, and the capacity of the 4 V plateau increased at the expense of that of the 5 V plateau. The latter change is attributed to movement of Mn{sup 3+} or Mn{sup 5+} ions from 8a to 16d sites.
6 GeV synchrotron x-ray source: Conceptual design report. Supplement B - conceptual design of proposed beam lines for the 6 GeV light source
In this document, preliminary conceptual designs are presented for ten sample beamlines for the 6 GeV Light Source. These beamlines will accommodate investigations in solid-state physics, materials science, materials technology, chemical technology, and biological and medical sciences. In future, the designs will be altered to include new developments in x-ray optics and hardware technologies. The research areas addressed by the samples beamlines are as follows: Topography and Radiography/Tomography (section 2); Inelastic Scattering with Ultrahigh Energy Resolution (Section 3); Surface and Bulk Studies Using High Momentum Resolution (Section 4); Inelastic Scattering from Charge and Spin (Section 5); Advanced X-Ray Photoelectron Spectroscopy Studies (Section 6); Small Angle X-Ray Scattering Studies (Section 7); General Purpose Scattering for Materials Studies (Section 8); Multiple-Energy Anomalous-Dispersion Studies of Proteins (Section 9); Protein Crystallography (Section 10); Time- and Space-resolved X-Ray Spectroscopy (Section 11); Medical Diagnostic Facility (Section 12); and Transuranium Research Facility (Section 13). The computer systems to be used on the beamlines are also discussed in Section 14 of this document.
(6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses
{sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.
8. annual national conference of black physics students -- A summary report
The primary goals of the conference were to: (1) Develop a peer/mentor network within the African-American physics community; (2) Inform African-American students in physics of the various academic and professional opportunities; and (3) Bring important academic, economic and political issues and developments in the field to the attention of the students. The conference program was designed to fulfill these goals and optimize the students` exposure to physics as a professional and its real-life applications in both industry and academia.
9. international mouse genome conference
This conference was held November 12--16, 1995 in Ann Arbor, Michigan. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on genetic mapping in mice. This report contains abstracts of presentations, focusing on the following areas: mutation identification; comparative mapping; informatics and complex traits; mutagenesis; gene identification and new technology; and genetic and physical mapping.
The 10,000-year debate
Probabilistic Risk Assessment (PRA) has developed into a respected tool within the reactor community. Now, this PRA technique is being applied to a new arena, the distant future of the nuclear waste repository. Problems are already testing the credibility of PRA.
A 10-GeV, 5-MW proton source for a muon-muon collider
The performance parameters of a proton source which produces the required flux of muons for a 2-TeV on 2-TeV muon collider are: a beam energy of 10 GeV, a repetition rate of 30 Hz, two bunches per pulse with 5 x 10{sup 13} protons per bunch, and an rms bunch length of 3 nsec (1). Aside from the bunch length requirement, these parameters are identical to those of a 5-MW proton source for a spallation neutron source based on a 10-GeV rapid cycling synchrotron (RCS) (2). The 10-GeV synchrotron uses a 2-GeV accelerator system as its injector, and the 2-GeV RCS is an extension of a feasibility study for a I-MW spallation source described elsewhere (3--9). A study for the 5-MW spallation source was performed for ANL site-specific geometrical requirements. Details are presented for a site-independent proton source suitable for the muon collider utilizing the results of the 5-MW spallation source study.
A 10-GeV, 5-MW proton source for a pulsed spallation source
A feasibility study for a pulsed spallation source based on a 5-MW, 10-GeV rapid proton synchrotron (RCS) is in progress. The integrated concept and performance parameters of the facility are discussed. The 10-GeV synchrotron uses as its injector the 2-GeV accelerator system of a 1-MW source described elsewhere. The 1-MW source accelerator system consists of a 400-MeV H{sup {minus}} linac with 2.5 MeV energy spread in the 75% chopped (25% removed) beam and a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV. The time averaged current of the accelerator system is 0.5 mA, equivalent to 1.04 {times} 10{sup 14} protons per pulse. The 10-GeV RCS accepts the 2 GeV beam and accelerates it to 10 GeV. Beam transfer from the 2-GeV synchrotron to the 10-GeV machine u highly efficient bunch-to-bucket injection, so that the transfer can be made without beam loss. The synchrotron lattice uses FODO cells of 90{degrees} phase advance. Dispersion-free straight sections are obtained using a missing magnet scheme. The synchrotron magnets are powered by dual-frequency resonant circuits. The magnets are excited at a 20-Hz rate and de-excited at 60-Hz. resulting in an effective 30-Hz rate. A key feature of the design of this accelerator system is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented.
10-MW demonstration of the gas suspension absorption process at TVA`s Center for Emissions Research. Final report
The Tennessee Valley Authority (TVA) in cooperation with AirPol Inc., and the U.S. Department of Energy (DOE), has recently completed a successful 17-month test program with the AirPol Gas Suspension Absorption (GSA) flue gas desulfurization (FGD) process at TVA`s Center for Emissions Research (CER). This project was selected by DOE for funding in the third round of the Clean Coal Technology Program. This 10-MW demonstration of the GSA FGD system at the CER was the first application of this technology in the U.S. The GSA test program, which was cofunded two-thirds by TVA and one-third by DOE/AirPol, was completed over a 17-month period from November 1, 1992 to March 31, 1993. This test program demonstrated that the GSA FGD technology could achieve high SO{sub 2} removal efficiencies (90+ percent) for a 2.7 percent sulfur (as-fired) coal application, while maintaining particulate emissions below the New Source Performance Standards (NSPS), i.e., 0.03 lb/MBtu, in a four-field electrostatic precipitator. The reliability and operability of this system was also demonstrated in a 28-day, 24 hour/day, continuous run during which the GSA unit simultaneously achieved high SO{sub 2} removal efficiencies (90+ percent) and maintained particulate emissions below the NSPS. Also, the air toxics removal capabilities of the GSA system were determined in a series of tests. A 1-MW pulsejet baghouse (PJBH) pilot plant was also tested in conjunction with this GSA test program. This PJBH testing was initially cofunded by TVA and the Electric Power Research Institute, who were later joined by AirPol and DOE in sponsoring this PJBH testing. A 14-day PJBH demonstration run was also completed to confirm the reliability of this system.
13 point video tape quality guidelines
Until high definition television (ATV) arrives, in the U.S. we must still contend with the National Television Systems Committee (NTSC) video standard (or PAL or SECAM-depending on your country). NTSC, a 40-year old standard designed for transmission of color video camera images over a small bandwidth, is not well suited for the sharp, full-color images that todays computers are capable of producing. PAL and SECAM also suffers from many of NTSC`s problems, but to varying degrees. Video professionals, when working with computer graphic (CG) images, use two monitors: a computer monitor for producing CGs and an NTSC monitor to view how a CG will look on video. More often than not, the NTSC image will differ significantly from the CG image, and outputting it to NTSC as an artist works enables the him or her to see the images as others will see it. Below are thirteen guidelines designed to increase the quality of computer graphics recorded onto video tape. Viewing your work in NTSC and attempting to follow the below tips will enable you to create higher quality videos. No video is perfect, so don`t expect to abide by every guideline every time.
Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors.
A 20 ampere shunt regulator for controlling individual magnets in a seriesed string
At the CEBAF accelerator, groups of dipole magnets are often connected together in series and powered from a single large constant-current regulated D-C supply, referred to locally as a {open_quotes}box{close_quotes} supply. Besides the economy realized, this configuration promotes correct field tracking of all elements of a beam transport channel. However, it is often desirable to vary the current in one element of a string independently of the others, particularly at the entrance and exits of transport channels. A 20 ampere programmable current shunt is described. Installed in parallel with the desired magnet, it permits shunting (bypassing) up to 5% of the string current around that magnet. The shunt regulator consists of a bank of MOSFET power transistors operated in linear mode. Regulation of current through the passbank is obtained by feedback from a manganin shunt maintained at a constant temperature for stability. The module is designed for remote operation and provides readbacks of various parameters useful for maintenance. To achieve complete electrical isolation, an onboard microprocessor provides remote communications via an opto-isolated serial data link. Constructional details and initial operating experience with the plug-in shunt are described.
45-Day safety screening report for grab samples from Tank 241-AP-107
Three samples; 107-AP-1C, 107-AP-2c and 107-AP-3C; were received at 222-S Laboratory for analysis of DSC, TGA and visual appearance. Four additional samples; 107-AP-1D, 107-AP-2D, 107-AP-3D and 107-AP-6; were received for visual appearance only. No results exceeded the safety screen notification criteria. This report compiles the analytical results. Tank 241-AP-107 is a double-shell tank which is not on any of the four Watch Lists.
45-Day safety screening results for tank 241-U-102, push mode cores 143 and 144
This document is the 45-day report deliverable for tank 241-U-102 push mode core segments collected between April 16, 1996 and May 6, 1996 and received by the 222-S Laboratory between April 17, 1996 and May 8, 1996. The segments were subsampled and analyzed in accordance, with the Tank 241-U-102 Push Mode Core Sampling and analysis Plan (TSAP) (Hu, 1996) and the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995). The analytical results are included in Table 1. Attachment I is a cross reference to relate the tank farm identification numbers to the 222-S Laboratory LabCore sample numbers. The subsamples generated in the laboratory for analysis are identified in these diagrams with their sources shown. The diagram identifying the hydrostatic head fluid (HHF) blank is also included, Primary safety screening results and the raw data from Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA) analyses are included in this report. Two of the samples submitted for DSC analysis exceeded notification limits as stated in the Safety Screening DQO (Dukelow, et al., 1995). Cyanide analysis was requested on these samples and a Reactive System Screening Tool analysis was requested for the sample exhibiting the highest exothenn in accordance with the TSAP (Hu, 1996). The results for these analyses will be reported in a revision to this document.
60-Day waste compatibility safety issues and final results for AY-102 grab samples
Four grab samples (2AY-96-15, 2AY-96-16, 2AY-96-17, and 2AY-96-18) were taken from Riser 15D of Tank 241-AY-102 on October 8, 1996, and received by 222-S Laboratory on October 8, 1996. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan (TSAP) and Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) in support of the Waste Compatibility Program. No notifications were required based on sample results.
60-day waste compatibility safety issues and final results for TX-244 grab samples
Three grab samples (244-TX-96-1, 244-TX-96-2, and 244-TX-96-3) were taken from Riser 8 of Tank 241-TX-244 on October 18, 1996, and received by 222-S Laboratory on October 18, 1996. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan (TSAP) and Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) in support ofthe Waste Compatibility Program. Notifications were made in accordance with TSAP for pH and OH- analyses. Upon further review, the pH notification was deemed unnecessary, as the notification limit did not apply to this tank.
60 kilograms high explosive containment with multi-diagnostic capability
In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) proposes to construct a 60 kilogram (kg) firing chamber to provide blast-effects containment for most of its open-air, high explosives, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the generated hazardous waste.
90-Day safety screen results and final report for tank 241-B-104 push-mode, cores 88 and 89. Revision 1
This document reports the final screen results for tank 241-B-104 Push Mode, Cores 88 and 89
94-1 Research and Development Project Lead Laboratory Support. Status report, April 1, 1996--June 30, 1996
This document reports status and technical progress for Los Alamos 94-1 Research and Development projects concerned with the management of plutonium and plutonium contaminated materials during the third quarter of FY96.
94-1 Research and development project lead laboratory support. Status report, January 1--March 31, 1996
This document reports status and technical progress for Los Alamos National Laboratories 94-1 Research and Development projects. An introduction to the project structure and an executive summary are included. Projects described include Electrolytic Decontamination, Combustibles, Detox, Sand, Slag, and Crucible, Surveillance, and Core Technology.
94-1 Research and Development Project Lead laboratory support. Status report, October 1--December 31, 1995
This is a quarterly progress report of the 94-1 Research and Development Lead Laboratory Support Technical Program Plan for the first quarter of FY 1996. The report provides details concerning descriptions, DOE-complex-wide material stabilization technology needs, scientific background and approach, progress, benefits to the DOE complex, and collaborations for selected subprojects. An executive summary and report on end-of-quarter spending is included.
100-FR-3 groundwater/soil gas supplemental limited field investigation report
In 1993, a Limited Field Investigation (LFI) was conducted for the 100-FR-3 Operable Unit which identified trichloroethylene (TCE) as a contaminant of potential concern (COPC) (DOE-RL 1994). In groundwater samples collected for the LFI, TCE was detected in well 199-177-1 at a concentration exceeding the U.S. Environmental Protection Agency (EPA) maximum contaminant level (5 {mu}g/L) and Washington State groundwater criteria (3 {mu}g/L). With the concurrence of the EPA and the Washington State Department of Ecology (Ecology), a supplemental LFI was conducted to determine the extent and potential source of TCE groundwater contamination associated with the 100-FR-3 Operable Unit. This report summarizes the activities and results of the groundwater/soil gas supplemental LFI for the 100-FR-3 Operable Unit. The primary objective of this investigation was to assess the lateral distribution of TCE in shallow (3 to 5 ft below the water table) groundwater associated with the 100-FR-3 Operable Unit. The second objective was to assess soil gas (3 to 5 concentrations in the study area in an attempt to identify potential sources of TCE and develop a correlation between soil gas and groundwater concentrations). Finally, the third objective of the investigation was to refine the site conceptual model.
A 100 ps gated x-ray spectrometer
Material opacities are of interest in many fields. We have developed a Bragg reflection spectrometer that is gated for imaging samples in a laser heated environment for opacity measurement. A micro-channel plate is coated with a photocathode material and a fast pulse is launched across it. Electrons are converted to photons in a phosphor and recorded on film. Optical gate pulse widths of 100 ps are achieved. Some optical pulse width and sensitivity enhancements are noted at launch and termination. Events of interest are 200 ps long. The framing window is approximately 250 ps in length. Timing jitter is a problem. The instrument timing networks have been examined, and the source of jitter is still unknown. Timing to 50 ps resolution is desired. Close in proximity to the laser-driven event leads to complications in shielding from hard x-rays, hot electrons and shock-driven damage. High Z materials provide shielding from hard x-rays. Magnets screen out hot electrons produced by laser-matter interactions Filters provide energy fiducials. PCD`s provide high resolution timing measurements. Data is recorded on film in a specially designed film pack. The instrument is designed to be used in the NOVA Laser Facility at Lawrence Livermore National Laboratory.
101-SY Dome pressure issues surrounding mitigation pump decontamination during removal
This document addresses issues related to use of the spraywands and ring used to decontaminate the mitigation pump installed in 101-SY. It has been determined that use of the wands will influence tank dome pressures as a function of ventilation system configuration, spray drop size, rinse water temperature, and rate at which spraywand flows are established.