UNT Libraries Government Documents Department - 970 Matching Results

Search Results

A 50 mm bore superconducting dipole with a unique iron yoke structure
A 50 mm bore superconducting dipole with a thin stainless steel collar and a close in elliptical iron yoke was designed in order to obtain a high transfer function SW low saturation effects on the multipoles, and a one meter model was built and tested. Training behavior of the first 1 m model, called D19, is presented at 4.3 K and 1.8 K. At 1.8 K it reached the record field of 10.06 T. The two layer cos [theta] winding uses 30 and 36 strand cables identical to the cables of the 50 mm bore SSC dipole and it has an operating field of 6.6 T at 4.35 K with a current of 5800 A. To evaluate behavior at high fields, the mechanical structure for the model was designed for 10 T. The thin collar itself provides only a minimum prestress of 10 MPa. and the full prestress of 70 MPa is given by the iron yoke. An aluminum spacer is used to control the gap size in the vertically split iron yoke. The tapered gap in the yoke is determined by the size of the Al spacer so that during cooldown there is no loss of coil prestress and the gap remains closed when the magnet is energized.
A 50 mm bore superconducting dipole with a unique iron yoke structure
A 50 mm bore superconducting dipole with a thin stainless steel collar and a close in elliptical iron yoke was designed in order to obtain a high transfer function SW low saturation effects on the multipoles, and a one meter model was built and tested. Training behavior of the first 1 m model, called D19, is presented at 4.3 K and 1.8 K. At 1.8 K it reached the record field of 10.06 T. The two layer cos {theta} winding uses 30 and 36 strand cables identical to the cables of the 50 mm bore SSC dipole and it has an operating field of 6.6 T at 4.35 K with a current of 5800 A. To evaluate behavior at high fields, the mechanical structure for the model was designed for 10 T. The thin collar itself provides only a minimum prestress of 10 MPa. and the full prestress of 70 MPa is given by the iron yoke. An aluminum spacer is used to control the gap size in the vertically split iron yoke. The tapered gap in the yoke is determined by the size of the Al spacer so that during cooldown there is no loss of coil prestress and the gap remains closed when the magnet is energized.
Accelerated irradiation test of Gundremmingen reactor vessel trepan material
Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279{degrees}C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed.
Accelerator physics analysis with an integrated toolkit
Work is in progress on an integrated software toolkit for linear and nonlinear accelerator design, analysis, and simulation. As a first application, beamline'' and MXYZPTLK'' (differential algebra) class libraries, were used with an X Windows graphics library to build an user-friendly, interactive phase space tracker which, additionally, finds periodic orbits. This program was used to analyse a theoretical lattice which contains octupoles and decapoles to find the 20th order, stable and unstable periodic orbits and to explore the local phase space structure.
Accelerator physics analysis with an integrated toolkit
Work is in progress on an integrated software toolkit for linear and nonlinear accelerator design, analysis, and simulation. As a first application, ``beamline`` and ``MXYZPTLK`` (differential algebra) class libraries, were used with an X Windows graphics library to build an user-friendly, interactive phase space tracker which, additionally, finds periodic orbits. This program was used to analyse a theoretical lattice which contains octupoles and decapoles to find the 20th order, stable and unstable periodic orbits and to explore the local phase space structure.
The accuracy of beam-beam diagnostics for circular colliders
We investigate the potential of beam-beam deflection techniques for the determination of spot sizes, tilt angle, centering, and angular divergence for circular colliders. Achievable accuracies for all measured quantities are estimated.
The accuracy of beam-beam diagnostics for circular colliders
We investigate the potential of beam-beam deflection techniques for the determination of spot sizes, tilt angle, centering, and angular divergence for circular colliders. Achievable accuracies for all measured quantities are estimated.
Acoustic emission monitoring of HFIR vessel during hydrostatic testing
This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.
Acoustic emission monitoring of HFIR vessel during hydrostatic testing. Final report
This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.
An acousto-ultrasonic NDE technique for monitoring material anisotropy
A simpler and better way of monitoring the anisotropy of fiber-reinforced composite materials, based on the acousto-ultrasonic approach, is presented. In this approach, time of flight of the acousto-ultrasonic waves AU, rather than the stress wave factor, is measured. Two fundamental Lamb modes are generated under the first critical frequency: one is the first antisymmetric mode traveling with a slower velocity while the another is the first symmetric mode traveling with a faster speed. The later one is sensitive to the azimuthal angle and nearly nondispersive, and has a phase velocity very close to that of the bulk longitudinal wave of the material. Experimental data measured from two methods, TOF measurement and slope method, are compared with theoretical results; a good agreement is obtained for monitoring the material anisotropy. There is a great potential for this AU approach in material-property evaluation and in quantitative measurements of defects and debonding of fiber-reinforced composites. However, more studies are needed to better understand the effect of the fiber/matrix bonding on the measurements and to extract more information from the AU signals.
An acousto-ultrasonic NDE technique for monitoring material anisotropy
A simpler and better way of monitoring the anisotropy of fiber-reinforced composite materials, based on the acousto-ultrasonic approach, is presented. In this approach, time of flight of the acousto-ultrasonic waves AU, rather than the stress wave factor, is measured. Two fundamental Lamb modes are generated under the first critical frequency: one is the first antisymmetric mode traveling with a slower velocity while the another is the first symmetric mode traveling with a faster speed. The later one is sensitive to the azimuthal angle and nearly nondispersive, and has a phase velocity very close to that of the bulk longitudinal wave of the material. Experimental data measured from two methods, TOF measurement and slope method, are compared with theoretical results; a good agreement is obtained for monitoring the material anisotropy. There is a great potential for this AU approach in material-property evaluation and in quantitative measurements of defects and debonding of fiber-reinforced composites. However, more studies are needed to better understand the effect of the fiber/matrix bonding on the measurements and to extract more information from the AU signals.
Actinide Recovery Using Aqueous Biphasic Extraction: Initial Developmental Studies
Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.
Actinide recovery using aqueous biphasic extraction: Initial developmental studies
Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.
Actinide Recovery Using Aqueous Biphasic Extraction: Initial Developmental Studies
Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.
ADIFOR case study: VODE + ADIFOR
ADIFOR can be used to generate the Jacobians required by VODE in a manner that is easy to use. We provide a template to interface the ADIFOR-generated code with VODE and show how the template is used in a sample system of stiff ordinary differential equation. The ADIFOR-generated code is about 10% faster than the hand-coded Jacobian for this example.
ADIFOR case study: VODE + ADIFOR. ADIFOR working note No. 10
ADIFOR can be used to generate the Jacobians required by VODE in a manner that is easy to use. We provide a template to interface the ADIFOR-generated code with VODE and show how the template is used in a sample system of stiff ordinary differential equation. The ADIFOR-generated code is about 10% faster than the hand-coded Jacobian for this example.
Advanced direct liquefaction concepts for PETC generic units. [Mainly, the effect of preteatment of coal with carbon monoxide and steam]
CAER/UK: Detail coal and starting solvents from Wilsonville were analyzed to develop the data necessary to conduct process studies in the CO Pretreatment and Catalyst Evaluation segment of this program. A comparison of the solvent separation analysis with the distillation/separation used at Wilsonville showed that the residual solvent components contained a large amount of residual pentane soluble products. The ashy resid contained 3% iron and 400 ppM molybdenum. Although the iron content in the distillate and deashed resid was much less, namely about 200 ppM., the molybdenum concentrations in these fractions were not significantly reduced over the concentration in the ashy resid, i.e., 200 ppM in each. The pretreatment of coal with CO/H{sub 2}O in the presence of NaOH and Na{sub 2}CO{sub 3} has been shown to give a product which is lower in oxygen content and higher in hydrogen content compared to the raw coal. The atomic H/C ratios of the H{sub 2}O-insolubles, THF insolubles and the PA+A fractions of the products-together with the hydrogen consumption data suggested that the raw coal has been substantially depolymerized and hydrogenated via the WGS reaction during the pretreatment process. The extensive amount of molecular reconstruction that has occurred in the solid product was evident from the ease of solubilization of the product into pyridine. The result of the pretreatment process is a product which is highly reactive under hydroliquefaction conditions at 400{degrees}C. Reaction rates seem to be much faster than the raw coal, especially at shorter reaction times, providing the opportunity for major reductions in plant vessel sizes, and preliminary data has led us to believe that better efficiency in hydrogen utilization is achieved.
Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1992--June 1992
CAER/UK: Detail coal and starting solvents from Wilsonville were analyzed to develop the data necessary to conduct process studies in the CO Pretreatment and Catalyst Evaluation segment of this program. A comparison of the solvent separation analysis with the distillation/separation used at Wilsonville showed that the residual solvent components contained a large amount of residual pentane soluble products. The ashy resid contained 3% iron and 400 ppM molybdenum. Although the iron content in the distillate and deashed resid was much less, namely about 200 ppM., the molybdenum concentrations in these fractions were not significantly reduced over the concentration in the ashy resid, i.e., 200 ppM in each. The pretreatment of coal with CO/H{sub 2}O in the presence of NaOH and Na{sub 2}CO{sub 3} has been shown to give a product which is lower in oxygen content and higher in hydrogen content compared to the raw coal. The atomic H/C ratios of the H{sub 2}O-insolubles, THF insolubles and the PA+A fractions of the products-together with the hydrogen consumption data suggested that the raw coal has been substantially depolymerized and hydrogenated via the WGS reaction during the pretreatment process. The extensive amount of molecular reconstruction that has occurred in the solid product was evident from the ease of solubilization of the product into pyridine. The result of the pretreatment process is a product which is highly reactive under hydroliquefaction conditions at 400{degrees}C. Reaction rates seem to be much faster than the raw coal, especially at shorter reaction times, providing the opportunity for major reductions in plant vessel sizes, and preliminary data has led us to believe that better efficiency in hydrogen utilization is achieved.
Advanced Light Source First-Phase Scientific Program, 1993/1994
This composite document outlines ten different experiments planned for the beamline at the Advanced Light Source. Researchers from various parts of the country have detailed their methods and equipment to be used in experiments in biology and physics. X-ray spectroscopy and microscopy are the common topics to these experiments. (GHH)
Advanced Light Source First-Phase Scientific Program, 1993/1994
This composite document outlines ten different experiments planned for the beamline at the Advanced Light Source. Researchers from various parts of the country have detailed their methods and equipment to be used in experiments in biology and physics. X-ray spectroscopy and microscopy are the common topics to these experiments. (GHH)
Advanced liquefaction using coal swelling and catalyst dispersion techniques
Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.
Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992
Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.
Advanced NMR-based techniques for pore structure analysis of coal. Quarterly report No. 3, March 1, 1992--June 30, 1992
One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We will investigate the dependence of the common NMR parameters such as chemical shifts and relaxation times of several different nuclei and compounds on the pore structure of model microporous solids, carbons, and coals. In particular, we will study the interaction between several small molecules ({sup 129}Xe, {sup 3}He, {sup 2}H{sub 2}, {sup 14}N{sub 2}, {sup 14}NH{sub 3}, {sup 15}N{sub 2}, {sup 13}CH{sub 4}, {sup 13}CO{sub 2}) and the pore surfaces in coals. These molecules have been selected for their chemical and physical properties. A special NMR probe will be constructed which will allow the concurrent measurement of NMR properties and adsorption uptake at a variety of temperatures. All samples will be subjected to a suite of ``conventional`` pore structure analyses. These include nitrogen adsorption at 77 K with BET analysis, C0{sub 2} and CH{sub 4} adsorption at 273 K with D-R (Dubinin-Radushkevich) analysis, helium pycnometry, and small angle X-ray scattering as well as gas diffusion measurements. The project combines expertise at the UNM (pore structure, NMR), Los Alamos National Laboratory (NMR), and Air Products (porous materials).
AFBC Roadbed Project groundwater data
TVA permitted the use of AFBC material in a section of roadbed at Paducah, Kentucky, for the purpose of demonstrating its usability as a roadbed base. To determine if the material would leach and contaminate groundwater, four wells and seven lysimeters were installed beside and in the roadbed base material. In August 1991, TVA Field Engineering visited the AFBC Roadbed Project to collect samples and water quality data. The goal was to collect samples and data from four wells and seven lysimeters. All attempts to collect samples from the lysimeters failed with one exemption. All attempts to collect samples from the groundwater wells were successful. The analytical data from the four wells and one lysimeter are also attached. The well data is typical of groundwater in the Paducah, Kentucky area indicating that it was not affected by the AFBC roadbed material. The analysis of the lysimeter shows concentrations for iron and manganese above normal background levels, however, the data do not reflect significant concentrations of these heavy metals. Also, the difficulty in obtaining the lysimeter samples and the fact that the samples had to be composited to obtain sufficient quantity to analyze would make a qualitative evaluation of the data questionable.
Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992
Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL`s underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D&D-001.
Alpha low-level stored waste systems design study
The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.
Alpha Low-Level Stored Waste Systems Design Study
The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.
ALS beamlines for independent investigators: A summary of the capabilities and characteristics of beamlines at the ALS
There are two mods of conducting research at the ALS: To work as a member of a participating research team (PRT). To work as a member of a participating research team (PRT); to work as an independent investigator; PRTs are responsible for building beamlines, end stations, and, in some cases, insertion devices. Thus, PRT members have privileged access to the ALS. Independent investigators will use beamline facilities made available by PRTs. The purpose of this handbook is to describe these facilities.
ALS beamlines for independent investigators: A summary of the capabilities and characteristics of beamlines at the ALS
There are two mods of conducting research at the ALS: To work as a member of a participating research team (PRT). To work as a member of a participating research team (PRT); to work as an independent investigator; PRTs are responsible for building beamlines, end stations, and, in some cases, insertion devices. Thus, PRT members have privileged access to the ALS. Independent investigators will use beamline facilities made available by PRTs. The purpose of this handbook is to describe these facilities.
Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11
This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.
Analysis of a 16-inch globe valve with eroded walls
During the course of inspection activities at a commercial nuclear power plant varying degrees of wall tinning were observed in several 16-inch globe valves. The wall thinning was observed at several locations on the bridge and bonnet areas of the valves and was thought to be the result of erosion of the wall material. these valves were routinely subjected to leak rate tests as part of the normal inspection and maintenance activities. Erosion of the valve plug seat sufficient to allow leakage would normally be detected by the leak rate testing. However, the question was raised whether severe erosion in the bridge structure would create the potential for a structural failure that would prevent normal closing and seating of the valve. An analytical assessment or ``scoping analysis`` of one of the valves was undertaken to assess the potential for stresses exceeding yield and to indicate whether a more extensive analysis of the valve would be desirable. a linear-elastic finite element model including the valve body, bonnet region, seat ring, and inlet and outlet bridge structures was developed. The model was subjected to a combination of internal pressure, valve plug seat force, and piping end moments. The results of the analysis indicate that even with erosion more severe than that observed in the actual valves, stress values did not approach yield. From these results it was concluded that yielding of the valve would not be anticipated with the observed erosion levels and that operability of the valves would not be impaired.
Analysis of debt leveraging in private power projects
As private power has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital. This leveraging is only possible because risks are shifted to the utility. Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not borne by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs.
Analysis of debt leveraging in private power projects
As private power (non-utility generation) has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital, and that this leveraging is only possible because risks are shifted to the utility. Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not home by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs.
Analysis of debt leveraging in private power projects
As private power has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital. This leveraging is only possible because risks are shifted to the utility. Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not borne by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs.
Analysis of debt leveraging in private power projects. Revision
As private power (non-utility generation) has grown to become a significant part of the electricity system, increasing concern about its financial implications has arisen. In many cases, the source of this concern has been the substantial reliance of these projects on debt financing. This study examines debt leveraging in private power projects. The policy debate on these issues has typically been conducted at a high level of generality. Critics of the private power industry assert that high debt leveraging confers an unfair competitive advantage by lowering the cost of capital, and that this leveraging is only possible because risks are shifted to the utility. Further, debt leveraging is claimed to be a threat to reliability. On the opposite side, it is argued that debt leveraging imposes costs and obligations not home by utilities, and so there is no financial advantage. The private producers also argue that on balance more risk is shifted away from utilities than to them, and that incentives for reliability are strong. In this study we examine the project finance mechanisms used in private power lending in detail, relying on a sample of actual loan documents. This review and its findings should be relevant to the further evolution of this debate. State regulatory commissions are likely to be interested in it, and Federal legislation to amend the Public Utility Holding Company Act (PUHCA) could require states to consider the implications of debt leveraging in relation to their oversight of utility power purchase programs.
Analysis of historical residential air-conditioning equipment sizing using monitored data
Monitored data were analyzed to determine whether residential air conditioners in the Pacific Northwest historically have been sized properly to meet or slightly exceed actual cooling requirements. Oversizing air-conditioning equipment results in a loss of efficiency because of increased cycling and also lowers humidity control. Larger air conditioners are also more expensive to purchase. On the other hand, the penalty of undersizing air-conditioning equipment may be some loss of comfort during extremely hot weather. of comfort during extremely hot weather. The monitored data consist of hourly space-conditioning electrical energy use and internal air temperature data collected during the past 7 years from 75 residences in the Pacific Northwest. These residence are equipped with central air conditioners or heat pumps. The periods with the highest cooling energy use were analyzed for each site. A standard industry sizing methodology (Manual J published by Air Conditioning Contractors of America) was used for each site to determine a sizing estimate. Both the sizing the recommendation based on Manual J and peak monitored loads are compared to capacity of the installed equipment for each site to study how the actual capacities differed from both the estimate of proper sizing and from actual demands. The characteristics of the maximum cooling loads are analyzed here to determine which conditions put the highest demand on the air conditioner. Specifically, internal air temperature data are used to determine when the highest cooling loads occur, at constant thermostat settings or when the thermostat was set down. This analysis of monitored data also provides insight into the extent occupant comfort may be affected by undersizing air conditioners.
Analysis of historical residential air-conditioning equipment sizing using monitored data
Monitored data were analyzed to determine whether residential air conditioners in the Pacific Northwest historically have been sized properly to meet or slightly exceed actual cooling requirements. Oversizing air-conditioning equipment results in a loss of efficiency because of increased cycling and also lowers humidity control. Larger air conditioners are also more expensive to purchase. On the other hand, the penalty of undersizing air-conditioning equipment may be some loss of comfort during extremely hot weather. of comfort during extremely hot weather. The monitored data consist of hourly space-conditioning electrical energy use and internal air temperature data collected during the past 7 years from 75 residences in the Pacific Northwest. These residence are equipped with central air conditioners or heat pumps. The periods with the highest cooling energy use were analyzed for each site. A standard industry sizing methodology (Manual J published by Air Conditioning Contractors of America) was used for each site to determine a sizing estimate. Both the sizing the recommendation based on Manual J and peak monitored loads are compared to capacity of the installed equipment for each site to study how the actual capacities differed from both the estimate of proper sizing and from actual demands. The characteristics of the maximum cooling loads are analyzed here to determine which conditions put the highest demand on the air conditioner. Specifically, internal air temperature data are used to determine when the highest cooling loads occur, at constant thermostat settings or when the thermostat was set down. This analysis of monitored data also provides insight into the extent occupant comfort may be affected by undersizing air conditioners.
Analysis of organic sulfur and nitrogen in coal via tandem degradation methods. Technical report, 1 December 1991--29 February 1992
With the recent increase in concern for environmental issues and the implication of sulfur and nitrogen in coal combustion products as prime causes of acid rain, it has become clear that there is an urgent need for alternative methods for determining the nature of organic sulfur and nitrogen compounds in coal. The present study couples mild oxidative and reductive procedures to enhance the depolymerization of coal and its constituent macerals and the quantities of products amenable to analysis. The study also seeks to apply the degradative techniques to coal asphaltenes, since they are believed to be polymeric structures similar to the whole coal, but smaller and more readily analyzed.
Analysis of the Industrial Sector Representation in the Fossil2 Energy-Economic Model
The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model`s parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.
Analysis of the industrial sector representation in the Fossil2 energy-economic model
The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model's parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed.
The analysis of transverse beam tail distributions of bunches with non-Gaussian shapes
The characterization of transverse particle distributions of bunches with non-Gaussian shapes is difficult due to a wide variety of possibilities. Without knowing additional information one can fit a distribution using first-, second-, third-, and higher order moments. These moments can then be used to describe beam shape changes along the accelerator, but with limited knowledge of the physics which caused the Perturbed shape. However, when the cause of the non-Gaussian distribution is known, a more detailed description of the particle distribution can be constructed. In the Stanford Linear Collider (SLC) non-Gaussian distributions are produced by transverse wakefields in the 3000 m linac.
The analysis of transverse beam tail distributions of bunches with non-Gaussian shapes
The characterization of transverse particle distributions of bunches with non-Gaussian shapes is difficult due to a wide variety of possibilities. Without knowing additional information one can fit a distribution using first-, second-, third-, and higher order moments. These moments can then be used to describe beam shape changes along the accelerator, but with limited knowledge of the physics which caused the Perturbed shape. However, when the cause of the non-Gaussian distribution is known, a more detailed description of the particle distribution can be constructed. In the Stanford Linear Collider (SLC) non-Gaussian distributions are produced by transverse wakefields in the 3000 m linac.
Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 1, Summary report
Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991.
Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 3, Wetlands survey maps
Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document consists solely of maps which illustrate the sampling points used in this study.
Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling
Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.
Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2B: Analytical data packages, January--February 1992 sampling
Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled of experimental data obtained from the sampling procedures.
An analytic description of thick-wall bubbles
A new approximation scheme to the false-vacuum decay is suggested. In this scheme the bounce solutions can be obtained in an explicit and analytic way even for thick-wall bubbles. The result is compared with Coleman`s thin-wall description, which shows that is nicely comprises the result of the latter prescription. Some applications are also discussed.
Application of 3-dimensional radiation transport codes to the analysis of the CRBR prototypic coolant pipe chaseway neutron streaming experiment
This report summarizes the calculational results from analyses of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway neutron streaming experiment Comparisons of calculated and measured results are presented, major emphasis being placed on results at bends in the chaseway. Calculations were performed with three three-dimensional radiation transport codes: the discrete ordinates code TORT and the Monte Carlo code MORSE, both developed by the Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, developed by Japan. The calculated results from the three codes are compared (1) with previously-calculated DOT3.5 two-dimensional results, (2) among themselves, and (3) with measured results. Calculations with TORT used both the weighted-difference and nodal methods. Only the weighted-difference method was used in ENSEMBLE. When the calculated results were compared to measured results, it was found that calculation-to-experiment (C/E) ratios were good in the regions of the chaseway where two-dimensional modeling might be difficult and where there were no significant discrete ordinates ray effects. Excellent agreement was observed for responses dominated by thermal neutron contributions. MORSE-calculated results and comparisons are described also, and detailed results are presented in an appendix.
Application of the ASME Code in the Design of the GA-4 and GA-9 Casks
General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.
Approach to geologic repository post closure system performance assessment
An essential part of the license application for a geologic repository will be the demonstration of compliance with the standards set by the Environmental Protection Agency. The performance assessments that produce the demonstration must rely on models of various levels of detail. The most detailed of these models are needed for understanding thoroughly the complex physical and chemical processes affecting the behavior of the system. For studying the behavior of major components of the system, less detailed models are often useful. For predicting the behavior of the total system, models of a third kind may be needed. These models must cover all the important processes that contribute to the behavior of the system, because they must estimate the behavior under all significant conditions for 10,000 years. In addition, however, computer codes that embody these models must calculate very rapidly because of the EPA standard`s requirement for probabilistic estimates, which will be produced by sampling thousands of times from probability distributions of parameters. For this reason, the total-system models must be less complex than the detailed-process and subsystem models. The total-system performance is evaluated through modeling of the following components: Radionuclide release from the engineered-barrier system. Fluid flow in the geologic units. Radionuclide transport to the accessible environment. Radionuclide release to the accessible environment and dose to man.
Back to Top of Screen