UNT Libraries Government Documents Department - 427 Matching Results

Search Results

D-0 North End Cap Calorimeter Cold Test Results
The North endcap calorimeter vessel was recieved on July 1, 1990. A cooldown of the pressure vessel with liquid nitrogen was performed on July 10-11 to check the vessel's integrity. With the pressure vessel cold, the insulating vacuum was monitored for leaks. Through out the testing, the insulating vacuum remained good and the vessel passed the test. The cold test was carried out per the procedures of D-Zero engineering note 3740.220-EN-250. The test was very similar to the cold test performed on the Central Calorimeter in October of 1987. Reference D-Zero engineering notes 3740.210-EN-122, 3740.000-EN107, and 3740.210-EN-110 for information about the CC cold test. The insulating vacuum space was pumped on while equipment was being connected to the pressure vessel. Two hours after starting to pump with the blower the vacuum space pressure was at about 210 microns. Pumping on the vacuum space for the next 15 hours showed no progress and a leak detector was connected to the pumping line. A leak check showed a leak in a thermocouple feedthru on the vacuum space relief plate. After fixing the leak, the pressure dropped to 16 microns in less than one hour. A rate of rise test was performed starting at a pressure of 13 microns. The pressure rose to 39 microns within 8 minutes and then only rose to 43 microns in 2.5 hours (1.6 microns/hour). After all connections were made to the pressure vessel, a vacuum pump with an estimated effective pumping speed of about 70 scfm was valved on. The lowest pressure achieved after 2 days of pumping was 80 microns. Valving out the pump for 30 minutes resulted in a 5 micron per minute rate of rise. The rate of rise was considered acceptable since there were known leak paths through the bolts of the signal …
1990 yearly calibration of Pacific Northwest Laboratory's gross-gamma borehole geophysical logging system
This report describes the 1990 yearly calibration of a gross-gamma geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory (PNL). The calibration was conducted to permit the continued use of this system for geological and hydrologic studies associated with remedial investigation at the Hanford Site. Primary calibrations to equivalent uranium units were conducted in borehole model standards that were recently moved to the Hanford Site from the DOE field calibration facility in Spokane, Washington. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. The integrity of the system throughout the previous year from gamma-ray monitoring was demonstrated using the before- and after-logging field calibration readings with the field source in calibration Positions 1 and 2. Most of the Position 1 readings are within an 8% limit that is set by the governing PNL technical reference procedure as a critical value above which the instrument is considered suspect. Many of the Position 2 readings exceed the 8% limit; however, the fluctuation was traced to field-source geometry variability that affected Position 1 count rates by up to 6% and Position 2 count rates by as much as 16%. Correlations were established based on two similar approaches for relating observed count rate in before- and after-logging field calibrations to equivalent uranium concentrations. The temperature drift of the gamma-ray probe was documented and amounts to less than 0.1%/{degree}C within the temperature range 0{degree}C to 42{degree}C. The low-energy cutoff for the gross gamma-ray probe was determined to be between 46.5 and 59.5 keV. 10 refs., 4 figs., 13 tabs.
(The 25th international conference on high-energy physics at Singapore)
The traveler attended the 25th International Conference on High-Energy Physics in Singapore, August 1--8, 1990. The conference was dominated by results from the new LEP accelerator at CERN. The precision of the data from LEP is impressive, and all results are consistent with the standard model. No new physics'' has emerged at LEP. The traveler presented a talk on CERN/SPS WA80 results and had several interesting, private discussions on both L* and WA80 topics.
Accident analysis and safety review of DOE Category B reactors
DOE is employing the principle of comparability with the NRC requirements to guide its safety program. Since the safety record of research reactors licensed by the NRC has been established and accepted, the comparison of DOE Orders applicable to DOE research reactors with the NRC regulations applicable to research reactors would identify strengths and weaknesses of the DOE Orders. The comparison was made in 14 general topics of safety which are labeled Areas of Safety Concerns. This paper focuses on the Area of accident analysis and safety review and presents recommendations in these areas. 12 refs.
Action plan for the Tiger Team assessment report
This document contains responses and planned actions that address the findings of the Tiger Team Assessment of Brookhaven National Laboratory, June 1990. In addition, the document contains descriptions of the management and organizational structure to be used in conducting planned actions, root causes for the problems identified in the findings, responses, planned actions, schedules and milestones for completing planned actions, and, where known, costs associated with planned actions.
Advanced Development of the Nested Fiber Filter: Phase 1, Evaluation of cleaning Methods
Battelle has completed Phase I of the DOE program to evaluate cleaning methods for the Nested Fiber Filter (NFF). The results of the investigations into fly ash bonding mechanisms, and mechanical vibration and acoustic vibration techniques led to the conclusion that acoustic cleaning with a pulse combustor is the preferred integrated system for high-temperature, high-pressure applications.
Advanced Development of the Nested Fiber Filter: Phase 1, Evaluation of Cleaning Methods. Final report
Battelle has completed Phase I of the DOE program to evaluate cleaning methods for the Nested Fiber Filter (NFF). The results of the investigations into fly ash bonding mechanisms, and mechanical vibration and acoustic vibration techniques led to the conclusion that acoustic cleaning with a pulse combustor is the preferred integrated system for high-temperature, high-pressure applications.
The Advanced Light Source at the Lawrence Berkeley Laboratory (ALS, LBL)
The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.
Advanced Neutron Source equipment data base. [Advanced Neutron Source Facility]
The Advanced Neutron Source (ANS) is a new experimental facility planned to meet the national need for an intense, steady-state source of neutrons. It will be open for use by scientists from universities, industry, and other federal laboratories. The ANS will be equipped with an initial complement of advanced instruments for neutron scattering and nuclear physics research, with facilities for isotope production and for the study of materials in high radiation fields. The central structure is a 60-m ({approximately}200-ft) diam cylindrical, domed reactor building. This building will house the reactor itself, with its lower floors dedicated to beam and irradiation experiments and with a high-bay floor dedicated to reactor operations. A reactor support building, to be adjacent to the reactor building, will house other large reactor equipment and the general support equipment not located in the reactor building. The primary heat exchanger and circulating pumps will be located in cell banks within reactor containment. The guide hall building, connected to the reactor dome outside reactor containment, is dedicated to beam experiment use. The fourth building will be an office building serving both the extensive user community and the reactor operations staff. These buildings will contain many of the systems needed for operation of the ANS and will be comprised of equipment requiring specification of performance, test, and operating parameters. The number of equipment items, the possibility for multiple application of a particular piece of equipment, and the need for a single source of information for all equipment led to a requirement to develop and equipment-related data base. 3 refs., 2 figs., 1 tab.
Advanced systems for producing superclean coal
The purpose of this project was to develop several advanced separation processes for producing superclean coal containing 0.4--2.0% ash and very little pyritic sulfur. Three physical and physico-chemical processes were studied: microbubble flotation, selective hydrophobic coagulation, and electrochemical coal cleaning. Information has been collected from bench-scale experiments in order to determine the basic mechanisms of all three processes. Additionally, because microbubble flotation has already been proven on a bench scale, preliminary scale-up models have been developed for this process. A fundamental study of the electrochemistry of coal pyrite has also been conducted in conjunction with this scale-up effort in order to provide information useful for improving sulfur rejection. The effects of additives (NaCl and kerosene) were also investigated. 94 refs., 167 figs., 25 tabs.
Aging evaluation of class 1E batteries: Seismic testing
This report presents the results of a seismic testing program on naturally aged class 1E batteries obtained from a nuclear plant. The testing program is a Phase 2 activity resulting from a Phase 1 aging evaluation of class 1E batteries in safety systems of nuclear power plants, performed previously as a part of the US Nuclear Regulatory Commission's Nuclear Plant Aging Research Program and reported in NUREG/CR-4457. The primary purpose of the program was to evaluate the seismic ruggedness of naturally aged batteries to determine if aged batteries could have adequate electrical capacity, as determined by tests recommended by IEEE Standards, and yet have inadequate seismic ruggedness to provide needed electrical power during and after a safe shutdown earthquake (SSE) event. A secondary purpose of the program was to evaluate selected advanced surveillance methods to determine if they were likely to be more sensitive to the aging degradation that reduces seismic ruggedness. The program used twelve batteries naturally aged to about 14 years of age in a nuclear facility and tested them at four different seismic levels representative of the levels of possible earthquakes specified for nuclear plants in the United States. Seismic testing of the batteries did not cause any loss of electrical capacity. 19 refs., 29 figs., 7 tabs.
Alternative configurations for the waste-handling building at the Yucca Mountain Repository
Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared.
Ambient Weather Model Research and Development: Final Report.
Ratings for Bonneville Power Administration (BPA) transmission lines are based upon the IEEE Standard for Calculation of Bare Overhead Conductor Temperatures and Ampacity under Steady-State Conditions (1985). This steady-state model is very sensitive to the ambient weather conditions of temperature and wind speed. The model does not account for wind yaw, turbulence, or conductor roughness as proposed by Davis (1976) for a real time rating system. The objective of this research has been to determine (1) how conservative the present rating system is for typical ambient weather conditions, (2) develop a probability-based methodology, (3) compile available weather data into a compatible format, and (4) apply the rating methodology to a hypothetical line. The potential benefit from this research is to rate transmission lines statistically which will allow BPA to take advantage of any unknown thermal capacity. The present deterministic weather model is conservative overall and studies suggest a refined model will uncover additional unknown capacity. 14 refs., 40 figs., 7 tabs.
Analysis of health impact inputs to the US Department of Energy's risk information system
The US Department of Energy (DOE) is in the process of completing a survey of environmental problems, referred to as the Environmental Survey, at their facilities across the country. The DOE Risk Information System (RIS) is being used to prioritize these environmental problems identified in the Environmental Survey's findings. This report contains a discussion of site-specific public health risk parameters and the rationale for their inclusion in the RIS. These parameters are based on computed potential impacts obtained with the Multimedia Environmental Pollutant Assessment System (MEPAS). MEPAS is a computer-based methodology for evaluating the potential exposures resulting from multimedia environmental transport of hazardous materials. This report has three related objectives: document the role of MEPAS in the RIS framework, report the results of the analysis of alternative risk parameters that led to the current RIS risk parameters, and describe analysis of uncertainties in the risk-related parameters. 20 refs., 17 figs., 10 tabs.
Analysis of offsite Emergency Planning Zones (EPZs) for the Rocky Flats Plant. [Contains glossary]
A quality assurance plan (QAP) is a documented description or a listing of the controls to be implemented to assure that an operation or activity is accomplished in a consistent manner and in accordance with requirements. Federal, state, and local governments require emergency planning for facilities that may affect the public in the event of an accidental release of nuclear or hazardous materials. One of the purposes of this EG G Rocky Flats Plant (RFP) Analysis of Offsite Emergency Planning Zones (EPZ) project is to identify the EPZs where actions could be necessary to protect public health. The RFP EPZ project is developing an interim basis for potential sheltering and evacuation recommendations in the event of an accidental release of radionuclides to the atmosphere from this facility. Also, RFP is developing EPZs for accidental releases of major nonradiological hazardous substances to the atmosphere, and will analyze the impacts of an unplanned surface water release from the facility.
Analysis of stream bed sediments of Four Mile Creek
Until 1988, solutions containing nitric acid, odium hydroxide, low levels of radionuclides (mostly tritiated water) and some metals were discharged to unlined seepage basins at the F and H Areas of the Savannah River Site (SRS) as part of normal operations. The basins are now being closed according to the Resource Conservation and Recovery Act (RCA). As part of the closure, a Part B Post-Closure Care Permit is being prepared. The Part B permit requires information on contaminant concentrations in stream bed sediments in the adjacent Four Mile Creek, which are reported herein. 5 refs., 1 fig., 2 tabs.
Animal Intrusion Status Report for Fiscal Year 1989
The Protective Barrier and Warning Marker System Development Plan identified tasks that need to be completed to design a final protective barrier to implement in-place disposal of radioactive waste. This report summarizes the animal intrusion tasks that were conducted by Westinghouse Hanford Company in fiscal years 1988 and 1989 with respect to small mammals and water infiltration. 2 refs., 8 figs., 6 tabs.
Annual environmental monitoring report of the Lawrence Berkeley Laboratory
The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.
Antimatter, strangeness and exotic objects at RHIC (relativistic heavy ion collider)
We investigate the production of multiply strange composite objects and their antiparticles in collisions at the relativistic heavy ion collider RHIC.
Application of kinetic inductance thermometers to x-ray calorimetry
A kinetic inductance thermometer is applied to x-ray calorimetry, and its operation over a wide range of frequencies and geometries is discussed. Three amplifier configurations are described, one using a superconducting quantum interference device (SQUID) amplifier, another incorporating an FET amplifier in an amplitude modulated system, and the third, using a tunnel diode frequency modulated oscillator circuit. The predicted performance of each configuration is presented. 13 refs., 6 figs., 1 tab.
The Application of Moment Methods to the Analysis of Fluid Electrical Conductivity Logs in Boreholes
This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. Previous reports have presented a procedure for analyzing a time sequence of wellbore electric conductivity logs in order to obtain outflow parameters of fractures intercepted by the borehole, and a code, called BORE, used to simulate borehole fluid conductivity profiles given these parameters. The present report describes three new direct (not iterative) methods for analyzing a short time series of electric conductivity logs based on moment quantities of the individual outflow peaks and applies them to synthetic as well as to field data. The results of the methods discussed show promising results and are discussed in terms of their respective advantages and limitations. In particular it is shown that one of these methods, the so-called Partial Moment Method,'' is capable of reproducing packer test results from field experiments in the Leuggern deep well within a factor of three, which is below the range of what is recognized as the precision of packer tests themselves. Furthermore the new method is much quicker than the previously used iterative fitting procedure and is even capable of handling transient fracture outflow conditions. 20 refs., 11 figs., 10 tabs.
Application of the NNWSI [Nevada Nuclear Waste Storage Investigations] Unsaturated Test Method to Actinide Doped SRL [Savannah River Laboratory] 165 Type Glass
The results of tests done using the Unsaturated Test Method are presented. These tests, done to determine the suitability of glass in a potential high-level waste repository as developed by the Nevada Nuclear Waste Storage Investigations Project, simulate conditions anticipated for the post-containment phase of the repository when only limited contact between the waste form and water is expected. The reaction of glass occurs via processes that are initiated due to glass/water vapor and glass/liquid water contact. Vapor interaction results in the initiation of an exchange process between water and the more mobile species (alkalis and boron) in the glass. The liquid reaction produces interactions similar to those seen in standard leaching tests, except due to the limited amount of water present and the presence of partially sensitized 304L stainless steel, the formation of reaction products greatly exceeds that found in MCC-1 type leach tests. The effect of sensitized stainless steel on the reaction is to enhance breakdown of the glass matrix thereby increasing the release of the transuranic elements from the glass. However, most of the plutonium and americium released is entrained by either the metal components of the test or by the reaction phases, and is not released to solution.
Application of the NNWSI [Nevada Nuclear Waste Storage Investigations] unsaturated test method to actinide doped SRL [Savannah River Laboratory] 165 type glass
The results of tests done using the Unsaturated Test Method are presented. These tests, done to determine the suitability of glass in a potential high-level waste repository as developed by the Nevada Nuclear Waste Storage Investigations Project, simulate conditions anticipated for the post-containment phase of the repository when only limited contact between the waste form and water is expected. The reaction of glass occurs via processes that are initiated due to glass/water vapor and glass/liquid water contact. Vapor interaction results in the initiation of an exchange process between water and the more mobile species (alkalis and boron) in the glass. The liquid reaction produces interactions similar to those seen in standard leaching tests, except due to the limited amount of water present and the presence of partially sensitized 304L stainless steel, the formation of reaction products greatly exceeds that found in MCC-1 type leach tests. The effect of sensitized stainless steel on the reaction is to enhance breakdown of the glass matrix thereby increasing the release of the transuranic elements from the glass. However, most of the Pu and Am released is entrained by either the metal components of the test or by the reaction phases, and is not released to solution. 16 refs., 20 figs., 17 tabs.
An approach for testing attainment of soil background standards at Superfund sites
After the soil at a Superfund site has been remediated it is necessary to determine if the remediation effort has been successful. This determination involves comparing concentrations in soil at the remediated site with cleanup standards. The cleanup standard may be based on technological capabilities a risk assessment, or site-specific background concentrations. In this paper we discuss an approach for using two complementary nonparametric tests, the Wilcoxon Rank Sum (WRS) test and the Quantile test, to assess attainment of site-specific background standards at remediated Superfund sites. The tests are complementary in the sense that the WRS test is more powerful than the Quantile test to defect shift alternatives, i.e., to detect when the remedial action failed more or less uniformly throughout the Superfund site, whereas the Quantile test has more power than the WRS test to detect mixture alternatives, i.e., to detect when remedial action was inadequate in only a portion of the site. The approximate minimum power of the Quantile test is obtained and used to develop sample size tables for the test. A simple hot spot'' test is also used to insure that remedial action is conducted at least locally when any measurement exceeds a specified upper-limit value. 13 refs., 2 tabs.
The architecture of a network level intrusion detection system
This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.
Argon gas analysis to predict water leakage into the W88
Analyses of the internal argon gas concentrations monitored on surveillance units of the W84 indicates that field aging of this weapon for times up to {approximately}4 years does not lead to important increases in the rate at which water leaks into the interior of the weapon. This implies that the EPDM environmental seals used on the W84 do not age significantly over this time period. By comparing the percentages of oxygen and argon in the internal atmosphere, an estimate of the oxygen consumption rate is made for a typical W84 unit. The argon gas analysis approach is then applied to the W88, which is sealed with a new EPDM material. Predictive expressions are derived which relate the anticipated argon gas concentrations of future, field-returned units to their water leakage rates. The predictions are summarized in convenient plots, which can be immediately and easily applied to surveillance data as reported. Since the argon approach is sensitive enough to be useful over the entire lifetime of the W88, it can be used to point out leaking units and to determine whether long-term aging has any significant effect on the new EPDM material. 11 refs., 10 figs., 3 tabs.
Arsenal of democracy in the face of change: Precision Guided Munitions (PGMs), their evolution and some economic considerations, Working Paper No. 4
A brief study was made of some of the forces driving the move to Precision Guided Munitions (PGMs), including the quest for military effectiveness, combat experience, and logistic compression. PGMs cost from a few hundred to a few thousand dollars per Kg but are tens to hundreds of times more effective than conventional munitions. A year's peacetime plateau production of each US PGM can be carried by a few C-5 aircraft. Surge quantities of PGMs are within US airlift capabilities, taking some of the risk out of off-shore procurement. The improving capability of antiaircraft PGMs and the escalating cost of combat aircraft (50 to 100-fold in constant dollars since WW II) may bring into question the economic viability of manned attack aircraft. The same may be true to a slightly lesser degree for heavy armored vehicles. 14 refs., 5 tabs.
Assessment of municipal solid waste for energy production in the western United States
Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.
Assessment of the basis for modeling releases from plutonium oxidation
Ideally, a model of the release of plutonium aerosols from plutonium during oxidation or combustion should begin from a description of the plutonium material and its surroundings and proceed unequivocally to a situation-dependent estimate of the amount of oxide released and its size distribution. Such a model would need to provide a description of the heat- and mass-transfer processes involved and link them directly to the rate of aerosol production. The first step, the description of heat and mass transfer, is more easily achieved from current information than the second, the aerosol release. The sections of this report titled Physical Fundamentals'' and Available Theoretical Information'' describe the approach that would be required for theoretical modeling. The Experimental Results'' section describes the information on aerosol releases, size distributions, peak temperatures, oxidation rates, and experimental conditions that we have gleaned from the existing experimental literature. The data is summarized and the bibliography lists the relevant literature that has and has not been reviewed. 42 refs., 10 figs., 6 tabs.
Asymmetric B-factory note
Three main issues giving purpose to our visit to CERN, ESRF and DESY were to: assess the current thinking at CERN on whether Eta, the gas desorption coefficient, would continue to decrease with continued with continued beam cleaning, determine if the time between NEG reconditioning could be expanded, and acquire a knowledge of the basic fabrication processes and techniques for producing beam vacuum chambers of copper.
Atmospheric dispersion modeling and meteorological monitoring in support of emergency planning and response for the US Army's Chemical Stockpile Disposal Program
This technical memorandum examines the role of atmospheric dispersion modeling and meteorological monitoring in support of emergency planning and response for the US Army's Chemical Stockpile Disposal Program (CSDP). Air dispersion modeling and meteorological monitoring are expected to form key components in integrated accident assessment and warning systems at each of the eight CSDP installations. This report assesses the capabilities of operating state-of-the-art systems in order to establish a baseline for developing the requirements of the CSDP systems. A general tutorial on the types of atmospheric dispersion models currently available is provided, and the criteria for selection of emergency response models are developed. The requirements for meteorological monitoring are also described. In addition, the basic limitations of modeling and monitoring are discussed, and the importance of model verification is emphasized. Staffing requirements to operate an integrated modeling and monitoring system are characterized. The current state of modeling, monitoring, and staffing levels in support of emergency response at the eight US Army chemical stockpile depots involved in the CSDP is examined. Specific requirements appropriate to emergency planning and response at each of the eight sites are described. Recommendations are made for both the integrated system and the individual components of air dispersion modeling and meteorological monitoring. Finally, future work required to prepare for emergency response is discussed. 22 refs., 4 figs., 3 tabs.
Attenuation studies of booster-rocket propellants and their simulants
A series of impact experiments on a composite propellant, an energetic propellant, and their simulants was recently completed using a light-gas gun. Previous experiments were done to obtain Hugoniot data, to investigate the pressure threshold at which a reaction occurs, and to measure spall damage at various impact velocities. The present studies measured the attenuation of shock waves in these materials, completing the shock characterization needed for material modeling. An initial impulse of 2.0 GPa magnitude and {approximately}0.6 {mu}s duration was imposed upon samples of various thicknesses. VISAR was used to measure the free-surface velocity at the back of the samples; these data were used to generate a curve of shock-wave attenuation versus sample thickness for each material. Results showed that all four materials attenuated the shock wave very similarly. Material thicknesses of 3.0, 7.62, 12.7, and 19.0 mm attenuated the shock wave {approximately}16%, 33%, 50%, and 66% respectively. 14 refs., 12 figs., 4 tabs.
Augmented Fish Health Monitoring, 1990 Annual Report.
Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. This report briefly describes third-year work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin and for histopathological support services provided to participating state agencies. It also summarizes the health status of fish reared at participating Service hatcheries and provides a summary of case history data for calendar year 1989. Items of note included severe disease losses to infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho, the detection of IHN virus in juvenile spring chinook salmon at hatcheries on the lower Columbia River, and improved bacterial kidney disease (BKD) detection and adult assay by enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River Basin National Fish Hatcheries. Case history data was fully documented in a computerized data base for storage and analysis and is summarized herein. 2 refs., 1 fig., 4 tabs.
An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures
The need for highly accurate thermal property data for a broad range of new application fluids is well documented. To facilitate expansion of the current thermophysical database, an automated flow calorimeter was developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The experimental technique utilizes traditional electrical power input, adiabatic flow calorimetry with a precision metering pump that eliminates the need for on-line flow rate monitoring. In addition, a complete automation system, greatly simplifies the operation of the apparatus and increases the rapidity of the measurement process. The range over which the instrument was tested, was 300--600 K and 0--12 Mpa, although the calorimeter should perform up to the original design goals of 700 K and 30 MPa. The new flow calorimeter was evaluated by measuring the mean, isobaric, specific heat capacities of liquid water and n-pentane. These experiments yielded an average deviation from the standard literature data of +0.02% and a total variation of 0.05%. Additional data analysis indicated that the overall measurement uncertainty was conservatively estimated as 0.2% with an anticipated precision of 0.1--0.15% at all operating conditions. 44 refs., 27 figs., 2 tabs.
Auxiliary feedwater system risk-based inspection guide for the Diablo Canyon Unit 1 Nuclear Power Plant
This document presents a compilation of auxiliary feedwater (AFW) system failure information which has been screened for risk significance in terms of failure frequency and degradation of system performance. It is a risk-prioritized listing of failure events and their causes that are significant enough to warrant consideration in inspection planning at Diablo Canyon. This information is presented to provide inspectors with increased resources for inspection planning at Diablo Canyon. The risk importance of various component failure modes was identified by analysis of the results of probabilistic risk assessments (PRAs) for many pressurized water reactors (PWRs). However, the component failure categories identified in PRAs are rather broad, because the failure data used in the PRAs is an aggregate of many individual failures having a variety of root causes. In order to help inspectors to focus on specific aspects of component operation, maintenance and design which might cause these failures, an extensive review of component failure information was performed to identify and rank the root causes of these component failures. Both Diablo Canyon and industry-wide failure information was analyzed. Failure causes were sorted on the basis of frequency of occurrence and seriousness of consequence, and categorized as common cause failures, human errors, design problems, or component failures. This information permits an inspector to concentrate on components important to the prevention of core damage. Other components which perform essential functions, but which are not included because of high reliability or redundancy, must also be addressed to ensure that degradation does not increase their failure probabilities, and hence their risk importances. 23 refs., 1 fig., 1 tab.
Background-reducing x-ray multilayer mirror
This invention is comprised of a background-reducing x-ray multilayer mirror. A multiple-layer ``wavetrap`` deposited over the surface of a layered synthetic microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 {Angstrom} wavelengths have been optimized, while that at 304 {Angstrom} has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, their number and distance for the ``wavetrap.``
A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements
Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.
Beam Position Measurement in the CEBAF Recirculating Linacs by Use of Pseudorandom Pulse Sequences
The recirculating linear accelerator at CEBAF presents unique problems in beam position measurement. As many as five beams with different energies may be simultaneously in the linac. Modulation of the beam intensity by pseudorandom pulse sequences offers a simple, effective method for distinguishing between the individual beamlets.
Beam position measurement in the CEBAF recirculating linacs by use of pseudorandom pulse sequences
The recirculating linear accelerator at CEBAF presents unique problems in beam position measurement. As many as five beams with different energies may be simultaneously in the linac. Modulation of the beam intensity by pseudorandom pulse sequences offers a simple, effective method for distinguishing between the individual beamlets.
Beta optimization in the context of reactor relevant tokamaks
In a reactor relevant tokamak the appropriate definition of {beta}, the ratio of the particle and magnetic field pressures, is {beta}* {equivalent to} (2 < p{sup 2} >{sup {1/2}} /B{sup 2}), which exceeds the conventional definition by a factor dependent on the pressure peaking factor, PPF. A simple scaling is obtained which relates the two definitions, {beta}*/{beta}{approx equal}0.9 {plus} 0.15 PPF. Stability properties are determined in terms of {beta}* in a circular and dee-shaped tokamak. 4 refs., 6 figs.
Biological Remediation of Contaminated Soils at Los Angeles Air Force Base: Facility Design and Engineering Cost Estimate
This report presents a system design for using bioremediation to treat contaminated soil at Fort MacArthur near Los Angeles, California. The soil was contaminated by petroleum products that leaked from two underground storage tanks. Laboratory studies indicated that, with the addition of water and nutrients, soil bacteria can reduce the petroleum content of the soils to levels that meet regulatory standards. The system design includes soil excavation, screening, and mixing; treatment in five soil-slurry/sequencing-batch reactors; and dewatering by a rapid-infiltration basin. System specifications and cost estimates are provided. 5 refs., 8 figs., 5 tabs.
Bound-state quark and gluon contributions to structure functions in QCD
One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: intrinsic'' contributions, which are due to the direct scattering on the bound-state constituents, and extrinsic'' contributions, which are derived from particles created in the collision. In this talk, I discussed several aspects of deep inelastic structure functions in which the bound-state structure of the proton plays a crucial role: the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; the separation of the quark structure function of the proton onto intrinsic bound-valence'' and extrinsic non-valence'' components which takes into account the Pauli principle; the properties and identification of intrinsic heavy quark structure functions; and a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. 49 refs., 5 figs.
Bragg Crystal Polarimeter for the Spectrum-X-Gamma Mission
We are designing a Bragg crystal polarimeter for the focal plane of the SODART telescope on the Spectrum-X-Gamma mission. A mosaic graphite crystal will be oriented at 45{degree} to the optic axis of the telescope, thereby preferentially reflecting those x-rays which satisfy the Bragg condition and have electric vectors that are perpendicular to the plane defined by the incident and reflected photons. The reflected x-rays will be detected by an imaging proportional counter with the image providing direct x-ray aspect information. The crystal will be {approx}50 {mu}m thick to allow x-rays with energies {ge}4 keV to be transmitted to a lithium block mounted below the graphite. The lithium is used to measure the polarization of these high energy x-rays by exploiting the polarization dependence of Thomson scattering. The development of thin mosaic graphite crystals is discussed and recent reflectivity, transmission, and uniformity measurements are presented. 8 refs., 11 figs., 1 tab.
Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer progress report for DOE (Department of Energy) Office of Buildings Energy Research
The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.
CANVAS: C++ objects for easy graphics on an Evans and Sutherland PS390 terminal
The C++ classes described in this note comprise an attempt to provide an object-oriented approach, and if there was ever a graphics terminal naturally suited to object-oriented programming, the PS390 is it. Since a canvas is not a program but a variable to be used in programs, users can write software to suit their particular needs. By simply declaring canvas variables the application program is provided with an object which accepts data and displays it automatically. Any number of canvases can be placed anywhere on the screen, so data can be viewed in a variety of ways simultaneously. Further, the real-time'' transformation capabilities of the PS390 are activated in one step by connecting'' its external devices, the dials and the puck, to the desired canvas. There is no need for the applications programmer to construct his own function networks, choose names for nodes, and do any of the other administrative tasks laid out in the manuals, including connecting the terminal to a host computer and initializing it. These are handled automatically by the canvases themselves, thus removing this clutter from the application program.
Carbon reduction in uranium alloys utilizing hafnium additions
With increasing environmental concerns regarding the handling and storage of uranium waste, recycling previously used material is becoming exceedingly more important. Carbon is one of the primary trace impurities that builds up in uranium with repeated use. The goal of this study is to reduce carbon in recycled uranium during the casting process to carbon levels associated with virgin uranium derbies. Vacuum-induction casting experiments have demonstrated that hafnium (Hf) additions to unalloyed uranium (U) reduce carbon (C) levels by approximately 80% in up to 6.0 in. in depth in 5 {times} 7 {times} 15 in. (width {times} depth {times} thickness) book mold castings. Analytic modeling of the solidification process was initiated to compare the calculated/predicted thermal profile to the actual experimentally measured temperatures. Temperature profile predictions matched the experimental values at the top of the casting and accurately determined that the predominant heat loss is out of the bottom of the book mold assembly. However, the model overpredicts the temperature half way down the length of the casting. The boundary heat transfer coefficient at the bottom of the casting needs to be more accurately simulated. 4 refs., 5 figs., 3 tabs.
Cascades of high energy particles -- in parallel
No Description Available.
A case study in specifying data requirements for a decision support system database
An atomic database is a collection of detailed and archival data primarily used to support a decision support system (DSS). Typically, atomic data are generated externally from other sources. In order to build an atomic data base in which data represent the information the DSS users expect, detailed data requirements must be specified to the source system. The basic types of information a source system needs are a list of required data items, the frequency and terms of data needs, and the method of interface. A detailed list of required items recommended for inclusion in any specifications of external data requirements is presented in this paper. Because of the volume of information involved in such specifications, a matrix presentation is believed to be the best organizational format to describe the requirements concisely and precisely. The specifications of external data requirements written for the Worldwide Household Goods Information System for Transportation Modernization (WHIST-MOD) project for the Personal Property Directorate (MTPP) of the Military Traffic Management Command (MTMC) are presented as a case study in this paper. It has been shown that the specifications in this case study effectively serve the objective of such a document. It is recommended that the concept presented in this paper be used as a guideline in specifying data requirements for an atomic database. 5 refs., 2 figs.
Central Heating Plant Site Characterization Report, Marine Corps Combat Development Command, Quantico, Virginia
This report presents the methodology and results of a characterization of the operation and maintenance (O M) environment at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This characterization is part of a program intended to provide the O M staff with a computerized artificial intelligence (AI) decision support system that will assist the plant staff in more efficient operation of their plant. 3 refs., 12 figs.
Ceramic Technology for Advanced Heat Engines Project
The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.
Back to Top of Screen