You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Decade: 1920-1929
 Serial/Series Title: NACA Technical Reports
 Collection: Technical Report Archive and Image Library
Glues used in airplane parts

Glues used in airplane parts

Date: January 1, 1920
Creator: Allen, S W
Description: This report was prepared for the National Advisory Committee for Aeronautics and presents the results of investigations conducted by the Forest Products Laboratory of the United States Forest Service on the manufacture, preparation, application, testing and physical properties of the different types of glues used in wood airplane parts.
Contributing Partner: UNT Libraries Government Documents Department
A resume of the advances in theoretical aeronautics made by Max M. Munk

A resume of the advances in theoretical aeronautics made by Max M. Munk

Date: January 1, 1926
Creator: Ames, Joseph S
Description: In order to apply profitably the mathematical methods of hydrodynamics to aeronautical problems, it is necessary to make simplifications in the physical conditions of the latter. To begin with, it is allowable in many problems, as Prandtl has so successfully shown, to treat the air as having constant density and as free of viscosity. But this is not sufficient. It is also necessary to specify certain shapes for the solid bodies whose motion through the air is discussed, shapes suggested by the actual solids - airships or airfoils - it is true, but so chosen that they lead to solvable problems. In a valuable paper presented by Dr. Max M. Munk, of the National Advisory Committee for Aeronautics, Washington, to the Delft Conference in April, 1924, these necessary simplifying assumptions are discussed in detail. It is the purpose of the present paper to present in as simple a manner as possible some of the interesting results obtained by Dr. Munk's methods.
Contributing Partner: UNT Libraries Government Documents Department
Preliminary experiments to determine scale and slip-stream effects on a 1/24th size model of a JN4H biplane

Preliminary experiments to determine scale and slip-stream effects on a 1/24th size model of a JN4H biplane

Date: January 1, 1923
Creator: Bacon, D L
Description: This work was undertaken to obtain results on a small model of a complete airplane which might be used for comparison with corresponding tests made in full flight. Somewhat similar tests have been previously made at various other laboratories; but as certain discrepancies exist between corresponding tests in different tunnels, it has been deemed advisable to obtain a direct comparison for this particular installation. The present work covers tests on a one-twenty-fourth scale model at speeds varying from 6.7 m/sec. (15 m.p.h.) to 40.2 m/sec, (90 m.p.h.). A slip stream correction has been obtained by the use of a small belt-driven propeller mounted in front of the model, and force coefficients thus obtained are compared with the measurements of the same forces made in full flight on a geometrically similar airplane. This report gives lift, drag, and longitudinal moment values obtained in tests of a particularly accurate model over a wide range of speeds. A measure of the slip stream corrections on lift and drag forces was obtained by the use of a power-driven model propeller. Measurements were also made of forces and longitudinal moments for all angles from 0 degree to 360 degrees.
Contributing Partner: UNT Libraries Government Documents Department
The resistance of spheres in wind tunnels and in air

The resistance of spheres in wind tunnels and in air

Date: January 1, 1924
Creator: Bacon, D L
Description: To supplement the standardization tests now in progress at several laboratories, a broad investigation of the resistance of spheres in wind tunnels and free air has been carried out by the National Advisory Committee for Aeronautics. The subject has been classed in aerodynamic research, and in consequence there is available a great mass of data from previous investigations. This material was given careful consideration in laying out the research, and explanation of practically all the disagreement between former experiments has resulted. A satisfactory confirmation of Reynolds law has been accomplished, the effect of means of support determined, the range of experiment greatly extended by work in the new variable density wind tunnel, and the effects of turbulence investigated by work in the tunnels and by towing and dropping tests in free air. It is concluded that the erratic nature of most of the previous work is due to support interference and differing turbulence conditions. While the question of support has been investigated thoroughly, a systematic and comprehensive study of the effects of scale and quality of turbulence will be necessary to complete the problem, as this phase was given only general treatment.
Contributing Partner: UNT Libraries Government Documents Department
The distribution of lift over wing tips and ailerons

The distribution of lift over wing tips and ailerons

Date: January 1, 1924
Creator: Bacon, David L
Description: This investigation was carried out in the 5-foot wind tunnel of the Langley Memorial Aeronautical Laboratory for the purpose of obtaining more complete information on the distribution of lift between the ends of wing spars, the stresses in ailerons, and the general subject of airflow near the tip of a wing. It includes one series of tests on four models without ailerons, having square, elliptical, and raked tips respectively, and a second series of positively and negatively raked wings with ailerons adjusted to different settings. The results show that negatively raked tips give a more uniform distribution of air pressure than any of the other three arrangements, because the tip vortex does not disturb the flow at the trailing edge. Aileron loads are found to be less severe on wings with negative application to the calculation of aileron and wing stresses and also to facilitate the proper distribution of load in sand testing. Contour charts show in great detail the complex distribution lift over the wing.
Contributing Partner: UNT Libraries Government Documents Department
The decay of a simple eddy

The decay of a simple eddy

Date: January 1, 1923
Creator: Bateman, H
Description: The principal result obtained in this report is a generalization of Taylor's formula for a simple eddy. The discussion of the properties of the eddy indicates that there is a slight analogy between the theory of eddies in a viscous fluid and the quantum theory of radiation. Another exact solution of the equations of motion of viscous fluid yields a result which reminds one of the well-known condition for instability in the case of a horizontally stratified atmosphere.
Contributing Partner: UNT Libraries Government Documents Department
The Inertial Coefficients of an Airship in a Frictionless Fluid

The Inertial Coefficients of an Airship in a Frictionless Fluid

Date: January 1, 1924
Creator: Bateman, H
Description: This report deals with the investigation of the apparent inertia of an airship hull. The exact solution of the aerodynamical problem has been studied for hulls of various shapes and special attention has been given to the case of an ellipsoidal hull. In order that the results for this last case may be readily adapted to other cases, they are expressed in terms of the area and perimeter of the largest cross section perpendicular to the direction motion by means of a formula involving a coefficient K which varies only slowly when the shape of the hull is changed, being 0.637 for a circular or elliptic disk, 0.5 for a sphere, and about 0.25 for a spheroid of fineness ratio 7. For rough purposes it is sufficient to employ the coefficients, originally found for ellipsoids, for hulls otherwise shaped. When more exact values of the inertia are needed, estimates may be based on a study of the way in which K varies with different characteristics and for such a study the new coefficient possesses some advantage over one which is defined with reference to the volume of fluid displaced. The case of rotation of an airship hull has been investigated ...
Contributing Partner: UNT Libraries Government Documents Department
Diagrams of airplane stability

Diagrams of airplane stability

Date: January 1, 1921
Creator: Batemen, H
Description: In this report a study is made of the effect on longitudinal and lateral oscillations of an airplane of simultaneous variations in two resistance derivatives while the remainder of the derivatives are constant. The results are represented by diagrams in which the two variable resistance derivatives are used as coordinates, and curves are plotted along which the modulus of decay of a long oscillation has a constant value. The same type of analysis is also carried out for the stability of the parachute. In discussing the stability of the helicopter it is concluded that the gyroscopic effect on stability will be greater than in the case of the airplane.
Contributing Partner: UNT Libraries Government Documents Department
Stability of the parachute and helicopter

Stability of the parachute and helicopter

Date: January 1, 1920
Creator: Batemen, H
Description: This report deals with an extension of the theory of stability in oscillation to the case of aircraft following a vertical trajectory, and particularly to the oscillations of parachutes.
Contributing Partner: UNT Libraries Government Documents Department
Differential pressures on a Pitot-Venturi and a Pitot-static nozzle over 360 degrees pitch and yaw

Differential pressures on a Pitot-Venturi and a Pitot-static nozzle over 360 degrees pitch and yaw

Date: January 1, 1928
Creator: Bear, R M
Description: Measurements of the differential pressures on two navy air-speed nozzles, consisting of a Zahm type Pitot-Venturi tube and a SQ-16 two-pronged Pitot-static tube, in a tunnel air stream of fixed speed at various angles of pitch and yaw between 0 degrees and plus or minus 180 degrees. This shows for a range over -20 degrees to +20 degrees pitch and yaw, indicated air speeds varying very slightly over 2 per cent for the Zahm type and a maximum of about 5 per cent for the SQ-16 type from the calibrated speed at 0 degree. For both types of air-speed nozzle the indicated air speed increases slightly as the tubes are pitched or yawed several degrees from their normal 0 degrees altitude, attains a maximum around plus or minus 15 degrees to 25 degrees, declines rapidly therefrom as plus or minus 40 degrees is passed, to zero in the vicinity of plus or minus 70 degrees to 100 degrees, and thence fluctuates irregular from thereabouts to plus or minus 180 degrees. The complete variation in indicated air speed for the two tubes over 360 degree pitch and yaw is graphically portrayed in figures 9 and 10. For the same air speed ...
Contributing Partner: UNT Libraries Government Documents Department
FIRST PREV 1 2 3 4 5 NEXT LAST