Search Results

Aerodynamic and hydrodynamic tests of a family of models of flying hulls derived from a streamline body -- NACA model 84 series
Report discussing a series of related forms of flying-boat hulls representing various degrees of compromise between aerodynamic and hydrodynamic requirements was tested in Langley Tank No. 1 and in the Langley 8-foot high-speed tunnel. The purpose of the investigation was to provide information regarding the penalties in water performance resulting from further aerodynamic refinement and, as a corollary, to provide information regarding the penalties in range or payload resulting from the retention of certain desirable hydrodynamic characteristics. The information should form a basis for over-all improvements in hull form.
Analysis of wind-tunnel stability and control tests in terms of flying qualities of full-scale airplanes
From Introduction: "The purpose of this paper is to outline a suggested form of presentation of the results of a stability and control investigation in terms of flying qualities as defined in reference 1 and to systematize and review briefly the analytical work required for this type of presentation. No effort is made to specify definite test procedures."
Determination of general relations for the behavior of turbulent boundary layers
From Summary: "An analysis has been made of a considerable amount of data for turbulent boundary layers along wings and bodies of various shapes in order to determine the fundamental variables that control the development of turbulent boundary layers. It was found that the type of velocity distribution in the boundary layer could be expressed in terms of a single parameter. This parameter was chosen as the ratio of the displacement thickness to the momentum thickness of the boundary layer. The variables that control the development of the turbulent boundary layer apparently are: (1) the ratio of the nondimensional pressure gradient, expressed in terms of the local dynamic pressure outside the boundary layer and boundary-layer thickness, to the local skin-friction coefficient and (2) the shape of the boundary layer. An empirical equation has been developed in terms of these variables that, when used with the momentum equation and the skin-friction relation, makes it possible to trace the development of the turbulent boundary layer to the separation point."
The effect of mass distribution on the lateral stability and control characteristics of an airplane as determined by tests of a model in the free-flight tunnel
The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing moments of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained.
The Flow of a Compressible Fluid Past a Curved Surface
"An iteration method is employed to obtain the flow of a compressible fluid past a curved surface. The first approximation which leads to the Prandtl-Glauert rule, is based on the assumption that the flow differs but little from a pure translation. The iteration process then consists in improving this first approximation in order that it will apply to a flow differing from pure translatory motion to a greater degree. The method fails when the Mach number of the undisturbed stream reaches unity but permits a transition from subsonic to supersonic conditions without the appearance of a compression shock" (p. 305).
Formulas for propellers in yaw and charts of the side-force derivative
General formulas are given for propellers for the rate of change of side-force coefficient with angle of yaw and for the rate of change of pitching-moment coefficient with angle of yaw. Charts of the side-force derivative are given for two propellers of different plan form. The charts cover solidities of two to six blades and single and dual rotation. The blade angle ranges from 15 degrees or 20 degrees to 60 degrees.
The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders
Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.
Jet-boundary corrections for reflection-plane models in rectangular wind tunnels
A detailed method for determining the jet-boundary corrections for reflection-plane models in rectangular wind tunnels is presented. The method includes the determination of the tunnel span local distribution and the derivation of equations for the corrections to the angle of attack, the lift and drag coefficients, and the pitching-, rolling-, yawing-, and hinge-moment coefficients. The principle effects of aerodynamic induction and of the boundary-induced curvature of the streamlines have been considered. An example is included to illustrate the method. Numerical values of the more important corrections for reflection-plane models in 7 by 10-foot closed wind tunnels are presented.
Laminar-boundary-layer oscillations and transition on a flat plate
This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.
The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas
"An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene" (p. 1).
The Measurement of Fuel-Air Ratio by Analysis of the Oxidized Exhaust Gas
"An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas" (p. 73).
A method for calculating heat transfer in the laminar flow region of bodies
This report has been prepared to provide a practical method for determining the chordwise distribution of the rate of heat transfer from the surface of a wing or body of revolution to air. The method is limited in use to the determination of heat transfer from the forward section of such bodies when the flow is laminar. A comparison of the calculated average heat-transfer coefficient for the nose section of the wing of a Lockheed 12-A airplane with that experimentally determined shows a satisfactory agreement. A sample calculation is appended.
A Method of Estimating the Knock Rating of Hydrocarbon Fuel Blend
"The usefulness of the knock ratings of pure hydrocarbon compounds would be increased if some reliable method of calculating the knock ratings of fuel blends was known. The purpose of this study was to investigate the possibility of developing a method of predicting the knock ratings of fuel blends" (p. 1).
A Method of Estimating the Knock Rating of Hydrocarbon Fuel Blends
"The usefulness of the knock ratings of pure hydrocarbon compounds would be increased if some reliable method of calculating the knock ratings of fuel blends was known. The purpose of this study was to investigate the possibility of developing a method of predicting the knock ratings of fuel blends. Two blending equations have been derived from an analysis based on certain assumptions relative to the cause of fuel knock" (p. 1).
NACA Investigation of a Jet-Propulsion System Applicable to Flight
"Following a brief history of the NACA investigation of jet propulsion, a discussion is given of the general investigation and analysis leading to the construction of the jet-propulsion ground-test mock-up. The results of burning experiments and of test measurements designed to allow quantitative flight performance predictions of the system are presented and correlated with calculations. These calculations are then used to determine the performance of the system on the ground and in the air at various speeds and altitudes under various burning conditions. The application of the system to an experimental airplane is described and some performance predictions for this airplane are made" (p. 1).
On the plane potential flow past a lattice of arbitrary airfoils
The two-dimensional, incompressible potential flow past a lattice of airfoils of arbitrary shape is investigated theoretically. The problem is treated by usual methods of conformal mapping in several stages, one stage corresponding to the mapping of the framework of the arbitrary line lattice and another significant stage corresponding to the Theodorsen method for the mapping of the arbitrary single wing profile into a circle. A particular feature in the theoretical treatment is the special handling of the regions at an infinite distance in front of and behind the lattice. Expressions are given for evaluation of the velocity and pressure distribution at the airfoil boundary. An illustrative numerical example is included.
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m.
The problem of longitudinal stability and control at high speeds
In high-speed dives many airplanes exhibit a dangerous tendency to continue diving in spite of the application of large control forces. Wind-tunnel tests have confirmed that these difficulties are not peculiar to any particular configuration, so that the problem is of interest to all designers of high-speed airplanes. The purpose of this report is to acquaint designers with the cause of difficulties and with the means now known for their alleviation.
Propellers in yaw
It was realized as early as 1909 that a propeller in yaw develops a side force like that of a fin. In 1917, R. G. Harris expressed this force in terms of the torque coefficient for the unyawed propeller. Of several attempts to express the side force directly in terms of the shape of the blades, however, none has been completely satisfactory. An analysis that incorporates induction effects not adequately covered in previous work and that gives good agreement with experiment over a wide range of operating conditions is presented. The present analysis shows that the fin analogy may be extended to the form of the side-force expression and that the effective fin area may be taken as the projected side area of the propeller.
Review of Flight Tests of NACA C and D Cowlings on the XP-42 Airplane
"Results of flight tests of the performance and cooling characteristics of three NACA D cowlings and of a conventional NACA D cowling on the XP-42 airplane are summarized and compared. The D cowling is, in general, characterized by the use of an annular inlet and diffuser section for the engine-cooling air. The D cowlings tested were a long-nose high-inlet-velocity cowling, a short-nose high-inlet-velocity cowling, and a short-nose low inlet-velocity cowling" (p. 371).
Tests of Airfoils Designed to Delay the Compressibility Burble
"Fundamental investigations of compressibility phenomena for airfoils have shown that serious adverse changes of aerodynamic characteristics occur as the local speed over the surface exceeds the local speed of sound. These adverse changes have been delayed to higher free-stream speeds by development of suitable airfoil shapes. The method of deriving such airfoil shapes is described, and aerodynamic data for a wide range of Mach numbers obtained from tests of these airfoils in the Langley 24-inch high-speed tunnel are presented" (p. 1).
A Theoretical Investigation of Longitudinal Stability of Airplane with Free Controls Including Effect of Friction in Control System
"The relation between the elevator hinge-moment parameters and the control-forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance. The stability of the short-period oscillations is shown as a series of boundaries giving the limits of the stable region in terms of the elevator hinge-moment parameters. The effects of static stability, elevator moment of inertia, elevator mass unbalance, and airplane density are also considered" (p. 1).
A Theoretical Investigation of the Lateral Oscillations of an Airplane With Free Rudder With Special Reference to the Effect of Friction
"Charts showing the variation in dynamic stability with the rudder hinge-moment characteristics are presented. A stabilizing rudder floating tendency combined with a high degree of aerodynamic balance is shown to lead to oscillations of increasing amplitude. This dynamic instability is increased by viscous-friction in the rudder control system" (p. 147).
A Theoretical Investigation of the Rolling Oscillations of an Airplane With Ailerons Free
"An analysis is made of the stability of an airplane with ailerons free, with particular attention to the motions when the ailerons have a tendency to float against the wind. The present analysis supersedes the aileron investigation contained in NACA Technical Report no. 709. The equations of motion are first written to include yawing and sideslipping, and it is demonstrated that the principal effects of freeing the ailerons can be determined without regard to these motions" (p. 255).
Back to Top of Screen