You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Serial/Series Title: NACA Special Report
Engine Operation in Flight for Minimum Fuel Consumption

Engine Operation in Flight for Minimum Fuel Consumption

Date: November 1, 1939
Creator: Reuter, George
Description: Engine and airplane performance data have been gathered from various sources and analyzed to determine indications of the most economical methods of flight operation from a consideration of fuel expenditure. The analysis includes the influence of such facts as fuel-air ratio, engine speed, engine knock, altitude, cylinder cooling, spark timing, and limits of cruising brake mean effective pressure. The results indicate that the cheapest power is obtained with approximately correct mixture at low engine speed and highest permissible manifold pressure. If more power is desired, the methods of obtaining it are, in order of fuel economy: (a) increasing the engine speed and maintaining safe cylinder temperatures by cooling; (b) retarding the spark or cooling further to permit higher manifold pressure; and, (c) riching the mixture. The analysis further shows that the maximum time endurance of flight occurs at the air speed corresponding to minimum thrust horsepower required and with minimum practicable engine speed. Maximum mileage per pound of fuel is obtained at slightly higher air speed. The fuel-air ratio should be approximately the theoretically correct ratio in both cases. For an engine equipped with a geared supercharger, as in the example presented, and with knock as the limiting condition, a ...
Contributing Partner: UNT Libraries Government Documents Department
Estimated Effect of Ring Cowl on the Climb and Ceiling of an Airplane, Special Report

Estimated Effect of Ring Cowl on the Climb and Ceiling of an Airplane, Special Report

Date: June 1931
Creator: Louden, F. A.
Description: Although the application of a ring cowl to an airplane with an air-cooled engine increases the maximum L/D and the high speed to an appreciable extent, the performance in climb and ceiling is not increased as much as one would expect without analyzing the conditions. When a ring cowl is installed on an airplane, the propeller is set at a higher pitch to allow the engine to turn its rated r.p.m. at the increased high speed. V/nD is increased and the propeller efficiency at high speed is increased slightly. The ratio of r.p.m. at climbing speed, V(sub c) , to the r.p.m. at maximum speed, V (sub m) is dependent upon the ratio of V(sub c) to V(sub m). The increase in V(sub c) for all airplane with ring cowl i s not as great as the increase in V(sub m), so that the ratio V(sub c)/V(sub m) is less than for the airplane without ring. Consequently the r.p.m. and full throttle thrust power available are less at V(sub c) for the airplane with ring cowl and in spite of the increase in L/D due to the installation of the ring, the excess thrust power available for climbing is not ...
Contributing Partner: UNT Libraries Government Documents Department
Experimental Determination of Exhaust Gas Thrust, Special Report

Experimental Determination of Exhaust Gas Thrust, Special Report

Date: February 1, 1940
Creator: Pinkel, Benjamin & Voss, Fred
Description: This investigation presents the results of tests made on a radial engine to determine the thrust that can be obtained from the exhaust gas when discharged from separate stacks and when discharged from the collector ring with various discharge nozzles. The engine was provided with a propeller to absorb the power and was mounted on a test stand equipped with scales for measuring the thrust and engine torque. The results indicate that at full open throttle at sea level, for the engine tested, a gain in thrust horsepower of 18 percent using separate stacks, and 9.5 percent using a collector ring and discharge nozzle, can be expected at an air speed of 550 miles per hour.
Contributing Partner: UNT Libraries Government Documents Department
Experimental investigation of a new type of low-drag wing-nacelle combination

Experimental investigation of a new type of low-drag wing-nacelle combination

Date: July 1, 1942
Creator: Allen, H. J. & Frick, C. W., Jr.
Description: None
Contributing Partner: UNT Libraries Government Documents Department
Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

Date: May 1, 1939
Creator: Silverstein, Abe
Description: Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.
Contributing Partner: UNT Libraries Government Documents Department
A Flight Investigation of Exhaust-Heat De-Icing, Special Report

A Flight Investigation of Exhaust-Heat De-Icing, Special Report

Date: September 1, 1940
Creator: Rodert, Lewis A. & Jones, Alun R.
Description: The National Advisory Committee for Aeronautics has conducted exhaust-heat de-icing tests inflight t o provide data needed in the application of this method of ice prevention. Thc capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing will make available for de-icing purposes between 30 and 35 percent of the exhaust-gas heat. Data are given by which the heat required for ice prevention can be calculated. Sample calculations have been made, on a basis of existing engine power over wing area ratios, to show that sufficient heating can be obtained for ice protection on modern transport airplanes,.
Contributing Partner: UNT Libraries Government Documents Department
Flight Measurements of the Aileron Characteristics of a Grumman F4F-3 Airplane

Flight Measurements of the Aileron Characteristics of a Grumman F4F-3 Airplane

Date: September 1, 1942
Creator: Kleckner, Harold F.
Description: The aileron characteristics of a Grumman F4F-3 airplane were determined in flight by means of NACA recording and indicating instruments. The results show that the ailerons met NACA minimum requirements for satisfactory control throughout a limited speed range. A helix angle of approximately 0.07 radian was produced with flaps down at speeds from 90 to 115 miles per hour indicated airspeed and with flaps up from 115 to 200 miles per hour. With flaps up at 90 miles per hour, the helix angle dropped to 0.055 radian; above 200 miles per hour heavy aileron stick forces seriously restricted maneuverability in roll.
Contributing Partner: UNT Libraries Government Documents Department
Flight Tests of Exhaust Gas Jet Propulsion, Special Report

Flight Tests of Exhaust Gas Jet Propulsion, Special Report

Date: November 1, 1940
Creator: Pnkel, Benjamin & Turner, L. Richard
Description: Flight test s were conducted on the XP-41 airplane, equipped with a Pratt & Whitney R1830-19, 14-cylinder, air-cooled engine, to determine the increase in flight speed obtainable by the use of individual exhaust stacks directed rearwardly to obtain exhaust-gas thrust. Speed increases up to 18 miles per hour at 20,000 feet altitude were obtained using stacks having an exit area of 3.42 square inches for each cylinder. A slight increase in engine power and decrease in cylinder temperature at a given manifold pressure were obtained with the individual stacks as compared with a collector-ring installation. Exhaust-flame visibility was quite low, particularly in the rich range of fuel-air ratios.
Contributing Partner: UNT Libraries Government Documents Department
Flight Tests on the Lateral Control of an Airplane having a Split Flap which Retracts Ahead of Conventional Ailerons, Special Report

Flight Tests on the Lateral Control of an Airplane having a Split Flap which Retracts Ahead of Conventional Ailerons, Special Report

Date: December 1, 1933
Creator: Weick, Fred E.
Description: Since the recent more or less extensive adoption of high-lift flaps on airplane wings, the problem of providing satisfactory lateral control without sacrificing a part of the span of the flaps has become one of some importance. The difficulties have been largely a matter of obtaining satisfactory rolling moments with a smoothly graduated action, together with sufficiently small control forces throughout the entire speed range. As part of an investigation including several different lateral-control arrangements to be used with split flaps, the tests reported in this paper were made on one arrangement in which conventional ailerons of narrow chord are used, and a split flap is retracted into the under surface of th wing forward of th ailerons. When the flap is retracted, the arrangement is as sketched in figure 1(a). If a simple form of split flap were used, hinged at its forward edge, the appearance when deflected would be as shown in figure 1(b). The flap if deflected with its leading edge remaining in this forward position would give somewhat less than three fourths of the lift increase of the same flap in the usual rear position. (See reference 1.). If, as shown in figure 1(c), the split ...
Contributing Partner: UNT Libraries Government Documents Department
Full-Scale Tests of 4- and 6-Blade, Single- and Dual-Rotating Propellers, Special Report

Full-Scale Tests of 4- and 6-Blade, Single- and Dual-Rotating Propellers, Special Report

Date: August 1, 1940
Creator: Biermann, David & Hartman, Edwin P.
Description: Test of 10-foot diameter, 4- and 6-blade single- and dual-rotating propellers were conducted in the 20-foot propeller-research tunnel. The propellers were mounted at the front end of a streamline body incorporating spinners to house the hub portions. The effect of a symmetrical wing mounted in the slipstream was investigated. The blade angles investigated ranged from 20 degrees to 65 degrees; the latter setting corresponds to airplane speeds of over 500 miles per hour. The results indicate that dual-rotating propellers were from 0 to 6% more efficient than single-rotating ones; but when operating in the presence of a wing the gain was reduced about one-half. Other advantages of dual-rotating propellers were found to include greater power absorption and greater efficiency at the low V/nD operating range of high pitch propellers.
Contributing Partner: UNT Libraries Government Documents Department
Full-Scale Tests of Several Propellers Equipped with Spinners, Cuffs, Airfoil and Round Shanks, and NACA 16-Series Sections, Special Report

Full-Scale Tests of Several Propellers Equipped with Spinners, Cuffs, Airfoil and Round Shanks, and NACA 16-Series Sections, Special Report

Date: October 1, 1940
Creator: Biermann, David; Hartman, Edwin P. & Pepper, Edward
Description: Wind-tunnel tests of several propeller, cuff, and spinner combinations were conducted in the 20 foot propeller-research tunnel. Three propellers, which ranged in diameter from 8.4 to 11.25 feet, were tested at the front end of a streamline body incorporating spinners of two diameters. The tests covered a blade angle range from 20 deg to 65 deg. The effect of spinner diameter and propeller cuffs on the characteristics of one propeller was determined. Test were also conducted using a propeller which incorporated aerodynamically good shank sections and using one which incorporated the NACA 16 series sections for the outer 20 percent of the blades. Compressibility effects were not measured, owing to the low testing speeds. The results indicated that a conventional propeller was slightly more efficient when tested in conjunction with a 28 inch diameter spinner than with a 23 inch spinner, and that cuffs increased the efficiency as well as the power absorption characteristics. A propeller having good aerodynamic shanks was found to be definitely superior from the efficiency standpoint to a conventional round-shank propeller with or without cuffs; this propeller would probably be considered structurally impracticable, however. The propeller incorporating the NACA 16 series sections at the tims were ...
Contributing Partner: UNT Libraries Government Documents Department
Full-Scale Wind-Tunnel Investigation of Wing-Cooling Ducts Effects of Propeller Slipstream, Special Report

Full-Scale Wind-Tunnel Investigation of Wing-Cooling Ducts Effects of Propeller Slipstream, Special Report

Date: March 1, 1939
Creator: Nickle, F. R. & Freeman, Arthur B.
Description: The safety of remotely operated vehicles depends on the correctness of the distributed protocol that facilitates the communication between the vehicle and the operator. A failure in this communication can result in catastrophic loss of the vehicle. To complicate matters, the communication system may be required to satisfy several, possibly conflicting, requirements. The design of protocols is typically an informal process based on successive iterations of a prototype implementation. Yet distributed protocols are notoriously difficult to get correct using such informal techniques. We present a formal specification of the design of a distributed protocol intended for use in a remotely operated vehicle, which is built from the composition of several simpler protocols. We demonstrate proof strategies that allow us to prove properties of each component protocol individually while ensuring that the property is preserved in the composition forming the entire system. Given that designs are likely to evolve as additional requirements emerge, we show how we have automated most of the repetitive proof steps to enable verification of rapidly changing designs.
Contributing Partner: UNT Libraries Government Documents Department
Full-Scale Wind-Tunnel Investigation of Wing Cooling Ducts, Special Report

Full-Scale Wind-Tunnel Investigation of Wing Cooling Ducts, Special Report

Date: October 1, 1938
Creator: Nickle, F. R. & Freeman, Arthur B.
Description: The systematic investigation of wing cooling ducts at the NACA laboratory has been continued with tests in the full-scale wind tunnel on ducts of finite span. These results extend the previous investigation on section characteristics of ducts to higher Reynolds numbers and indicate the losses due to the duct ends. The data include comparisons between ducts completely within the ring and the conventional underslung ducts. Methods of flow regulation were studied and data were obtained for a wide range of internal duct resistance. The results show satisfactory correlation between the finite span and the previously measured section characteristics obtained with full-span ducts. The effects of the various design parameters on the duct characteristics are discussed. The cooling power required for the internal duct installation is shown to be only a small percentage of the engine power.
Contributing Partner: UNT Libraries Government Documents Department
High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane

High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane

Date: April 1, 1940
Creator: Becker, John V. & Leonard, Lloyd H.
Description: Force tests were made of a 1/8-scale model of a twin-engine low-wing transport airplane in the NACA 8-foot high-speed wind tunnel to investigate compressibility and interference effects at speeds up to 450 miles per hour. In addition to tests of the standard arrangement of the model tests were made with several modifications designed to reduce the drag and to increase the critical speed. The results show serious increases in drag at critical speeds below 450 miles per hour due to the occurrence of compressibility burbles on the standard radial-engine cowlings, on sections of the wing as a result of wing-nacelle interference, and on the semi-retracted main landing wheels. The critical speed at which the shock occurred on the standard cowlings was 20 miles per hour lower in the presence of the fuselage than in the presence of the wing only. The drag of the complete model was reduced 25% at 300 miles per hour by completely retracting the landing gear, fairing the windshield irregularities, and substituting streamline nacelles (with allowance made for the proper amount of cooling-air flow) for the standard nacelle arrangement. The values of the critical Mach number were extended from 0.47 to 0.60 as a result of ...
Contributing Partner: UNT Libraries Government Documents Department
High-Speed Tests of Radial-Engine Cowlings

High-Speed Tests of Radial-Engine Cowlings

Date: April 1, 1939
Creator: Robinson, Russell G. & Becker, John V.
Description: The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the N.A.C.A. 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination mere used in the tests.
Contributing Partner: UNT Libraries Government Documents Department
Ice Prevention on Aircraft by Means of Impregnated Leather Covers, Special Report

Ice Prevention on Aircraft by Means of Impregnated Leather Covers, Special Report

Date: August 1, 1935
Creator: Clay, William C.
Description: The National Advisory Committee for Aeronautics is testing the effectiveness of a method to prevent the formation of ice on airplanes. The system makes use of a leather cover that is attached to the leading edge of the wing. A small tube, attached to the inner surface of the leather, distributes to the leading edge a solution that permeates throughout the leather and inhibits the formation of ice on the surface. About 25 pounds of the liquid per hour would be sufficient to prevent ice from forming on a wing of 50-foot span. The additional gross weight of the system will not be excessive. The tests are not yet completed but the method is thought to be practicable for the wing and it may also be adaptable to the propeller.
Contributing Partner: UNT Libraries Government Documents Department
Intercooler Design for Aircraft, Special Report

Intercooler Design for Aircraft, Special Report

Date: September 1, 1939
Creator: Brevoort, M. J.; Joyner, U. T. & Leifer, M.
Description: When an airplane is operating at high altitude, it is necessary to use a supercharger to maintain ground pressure at the carburetor inlet. This maintenance and high intake-manifold pressure tends to keep the power output of the engine at ground-level value. The air, being compressed by the supercharger, however, is heated by adiabatic compression and friction to a temperature that seriously affect the performance of the engine. It is thus necessary to use an intercooler to reduce the temperature of the air between the supercharger outlet and the carburetor inlet. The amount of cooling required of the intercooler depend on the efficiency of the supercharger installation. In this investigation, several types of intercoolers were compared and a design procedure that will give the best intercooler for a given set of conditions is indicated. The figure of merit used for the selection of the best design was the total power consumed by the intercooler. This value includes the power required to transport the weight of the intercooler as well as the power used to force the charge air and the cooling air through the intercooler. The cost, size and practicality of construction were not considered, inasmuch as it was thought that ...
Contributing Partner: UNT Libraries Government Documents Department
Interference of Tail Surfaces and Wing and Fuselage from Tests of 17 Combinations in the N.A.C.A. Variable-Density Tunnel

Interference of Tail Surfaces and Wing and Fuselage from Tests of 17 Combinations in the N.A.C.A. Variable-Density Tunnel

Date: January 1, 1939
Creator: Sherman, Albert
Description: An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment to the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angel and as losses in the tail. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for a complete combination.
Contributing Partner: UNT Libraries Government Documents Department
Investigation in the 7-By-10 Foot Wind Tunnel of Ducts for Cooling Radiators Within an Airplane Wing, Special Report

Investigation in the 7-By-10 Foot Wind Tunnel of Ducts for Cooling Radiators Within an Airplane Wing, Special Report

Date: July 1, 1938
Creator: Harris, Thomas A. & Recant, Isidore G.
Description: An investigation was made in the NACA 7- by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional flow set-up with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included. It was found that radiators could be mounted in the wing and efficiently pass enough air for cooling with duct outlets located at any point from 0.25c to 0.70c from the wing leading edge on the upper surface. The duct-inlet position was found to be critical and, for maximum efficiency, had to be at the stagnation point of the airfoil and to change ...
Contributing Partner: UNT Libraries Government Documents Department
Investigation of an Electrically Heated Airplane Windshield for Ice Prevention, Special Report

Investigation of an Electrically Heated Airplane Windshield for Ice Prevention, Special Report

Date: March 1, 1939
Creator: Rodert, Lewis A.
Description: A study was made at the National Advisory Committee for Aeronautics Laboratory of the operation of an electrically heated glass panel, which simulated a segment of an airplane windshield, to determine if ice formations, which usually result in the loss of visibility, could be prevented. Tests were made in the 7- by 3-foot ice tunnel, and in flight, under artificially created ice-forming conditions. Ice was prevented from forming on the windshield model in the tunnel by 1.25 watts of power per square inch with the air temperature at 23 F and a velocity of 80 miles per hour. Using an improved model in flight, ice was prevented by 1.43 watts of power per square inch of protected area and 2 watts per inch concentrated in the rim, with the air temperature at 26 F and a velocity of 120 miles per hour. The removal of a preformed ice cap was effected to a limited extent in the tunnel by the use of 1.89 watts of power per square inch when the temperature and velocity were 25 F and 80 miles per hour, respectively. The results indicate that service tests with an improved design are justified.
Contributing Partner: UNT Libraries Government Documents Department
An Investigation of the Drag of Windshields in the 8-Foot High-Speed Wind Tunnel

An Investigation of the Drag of Windshields in the 8-Foot High-Speed Wind Tunnel

Date: June 1, 1939
Creator: Robinson, Russell G. & Delano, James B.
Description: The drag of closed-cockpit and transport-type windshields was determined from tests made at speeds from 200 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. This speed range corresponds to a test Reynolds number range of 2,510,000 to 4,830,000 based on the mean aerodynamic chord of the full-span model (17.29 inches). The shapes of the windshield proper, the hood, and the tail fairing were systematically varied to include common types and a refined design. Transport types varied from a reproduction of a current type to a completely faired windshield. The results show that the drag of windshields of the same frontal area, on airplanes of small to medium size, may account for 15% of the airplane drag or may be reduced to 1%. Optimum values are given for windshield and tail-fairing lengths; the effect, at various radii is shown. The longitudinal profile of a windshield is shown to be most important and the transverse profile, to be much less important. The effects of retaining strips, of steps for telescoping hoods, and of recessed windows are determined. The results show that the drag of transport-type windshields may account for 21% of the fuselage drag or may be reduced ...
Contributing Partner: UNT Libraries Government Documents Department
An Investigation of the Prevention of Ice on the Airplane Windshield

An Investigation of the Prevention of Ice on the Airplane Windshield

Date: November 1, 1939
Creator: Rodert, Lewis A.
Description: An investigation has been completed on several methods for the prevention and removal of ice on an airplane windshield. Tests were made on the use of electric heating, hot-air heating, and an alcohol-dispensing, rotating wiper blade. The results showed that vision through the airplane windshield could be maintained during severe icing conditions by the use of heat. When put in operation prior to the formation of ice on the windshield, the rotating wiper blade prevented the formation of ice. A combination system that employs the use of heated air and a rotating wiper blade would appear to give protection against the formation of ice on the windshield exterior, prevent frost on the interior, and provide for the removal of rainfall.
Contributing Partner: UNT Libraries Government Documents Department
Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report

Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report

Date: April 1, 1935
Creator: Freeman, Hugh B.
Description: Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic ...
Contributing Partner: UNT Libraries Government Documents Department
Mechanical Properties of Flush-Riveted Joints

Mechanical Properties of Flush-Riveted Joints

Date: January 1, 1940
Creator: Bruggeman, Wm. C. & Roop, Frederick C.
Description: The strength of representative types of flush-riveted joints has been determined by testing 865 single-shearing, double-shearing, and tensile specimens representing 7 types of rivet and 18 types of joint. The results, presented in graphic form, show the stress at failure, type of failure, and d/t ratio. In general, 'dimpled' joints were appreciably stronger than countersunk or protruding-head joints, but their strength was greatly influenced by constructional details. The optimum d/t ratios have been determined for the several kinds of joints. Photomacrographs of each type show constructional details and, in several instances, cracks in the sheet.
Contributing Partner: UNT Libraries Government Documents Department