You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Serial/Series Title: NACA Special Report
 Collection: National Advisory Committee for Aeronautics Collection
The Effect of Streamlining the Afterbody of an N.A.C.A. Cowling

The Effect of Streamlining the Afterbody of an N.A.C.A. Cowling

Date: December 1, 1939
Creator: Stickle, George W.
Description: The drag and the power cost associated with the changing of the nose of a nacelle from a streamline shape to a conventional N.A.C.A. cowling shape was investigated in the N.A.C.A. 20-foot tunnel. Full-scale propellers and nacelles were used. The increment of drag associated with the change of nose shapes was found to be critically dependent on the afterbody of the nacelle. Two streamline afterbodies were tested. The results fo the tests with the more streamlined afterbody showed that the added drag due to the open-nose cowling was only one-fourth of the drag increase obtained with the other afterbody. The results of this research indicate that the power cost, in excess of that with a streamline nose, of using an N.A.C.A. cowling in front of a well-designed afterbody to enclose a 1,500-horsepower engine in an airplane with a speed of 300 miles per hour amounts to 1.5 percent of the engine power. If the open-nose cowling is credited with 1 percent because it cools the front of the cylinders, the non-useful power cost amounts to only 0.5 percent of the engine power.
Contributing Partner: UNT Libraries Government Documents Department
The Effect of Surface Irregularities on Wing Drag, 3, Roughness

The Effect of Surface Irregularities on Wing Drag, 3, Roughness

Date: February 1, 1938
Creator: Hood, Manley J.
Description: Tests have been made in the N.A.C.A. 8-foot high-speed wind tunnel of the drag caused by roughness on the surface of an airfoil of N.A.C.A. 23012 section and 5-foot chord. The tests were made at speeds from 80 t o 500 miles per hour at lift coefficients from 0 to 0.30. For conditions corresponding to high-speed flight, the increase in the drag was 30 percent of the profile drag of the smooth airfoil for the roughness produced by spray painting and 63 percent for the roughness produced. by 0.0037-inch carborundum grains. About one-half the drag increase was caused by the roughness on the forward one-fourth of the airfoil. Sandpapering the painted surface with No. 400 sandpaper made it sufficiently smooth that the drag was no greater than when the surface was polished. In the lower part of the range investigated the drag due to roughness increased rapidly with Reynolds Number.
Contributing Partner: UNT Libraries Government Documents Department
The Effect of Surface Irregularities on Wing Drag. I. Rivets and Spot Welds, 1, Rivets and Spot Welds

The Effect of Surface Irregularities on Wing Drag. I. Rivets and Spot Welds, 1, Rivets and Spot Welds

Date: February 1, 1938
Creator: Hood, Manley J.
Description: Tests have been conducted in the NACA 8-foot high-speed wind tunnel to determine the effect of exposed rivet heads and spot welds on wing drag. Most of the tests were made with an airfoil of 5-foot chord. The air speed was varied from 80 to 500 miles per hour and the lift coefficient from 0 to 0.30. The increases in the drag of the 5-foot airfoil varied from 6%, due to countersunk rivets, to 27%, due to 3/32-inch brazier-head rivets, with the rivets in a representative arrangement. The drag increases caused by protruding rivet heads were roughly proportional to the height of the heads. With the front row of rivets well forward, changes in spanwise pitch had negligible effects on drag unless the pitch was more than 2.5% of the chord. Data are presented for evaluating the drag reduction attained by removing rivets from the forward part of the wing surface; for example, it is shown that over 70% of the rivet drag is caused by the rivets on the forward 30% of the airfoil in a typical case.
Contributing Partner: UNT Libraries Government Documents Department
The Effect of Surface Irregularities on Wing Drag. II - Lap Joints, 2, Lap Joints

The Effect of Surface Irregularities on Wing Drag. II - Lap Joints, 2, Lap Joints

Date: February 1, 1938
Creator: Hood, Manley J.
Description: Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.
Contributing Partner: UNT Libraries Government Documents Department
The Effect of Surface Irregularities on Wing Drag. IV - Manufacturing Irregularities, 5, Manufacturing Irregularities

The Effect of Surface Irregularities on Wing Drag. IV - Manufacturing Irregularities, 5, Manufacturing Irregularities

Date: February 1, 1938
Creator: Robinson, Russell G.
Description: Tests were made in the NACA 8-foot high speed wind tunnel of a metal-covered, riveted, 'service' wing of average workmanship to determine the aerodynamic effects of the manufacturing irregularities incident to shop fabrication. The wing was of 5-foot chord and of NACA 23012 section and was tested in the low-lift range at speeds from 90 to 450 miles per hour corresponding to Reynolds numbers from 4,000,000 to 18,000,000. At a cruising condition the drag of the service wing was 46% higher than the drag of a smooth airfoil, whereas the drag of an accurately constructed airfoil having the same arrangement of 3/32-inch brazier-head rivets and lap joints showed a 29% increase. The difference, or 17% of the smooth-wing drag, is apparently the drag caused by the manufacturing irregularities: sheet waviness, departures from true profile, and imperfect laps. the service wing, for one condition at least, showed a drag increase due to compressibility at a lower air speed than did the more accurate airfoil.
Contributing Partner: UNT Libraries Government Documents Department
The Effect of Various Wing-Gun Installations on the Aerodynamic Characteristics of an Airplane Model Equipped with an NACA Low-Drag Wing, Special Report

The Effect of Various Wing-Gun Installations on the Aerodynamic Characteristics of an Airplane Model Equipped with an NACA Low-Drag Wing, Special Report

Date: July 1, 1941
Creator: Muse, Thomas C.
Description: An investigation was made in the NACA 19-foot pressure wind tunnel to determine the effect of various win-gun installation on the aerodynamic characteristics of a model with an NACA low-drag wing. Measurements were made of lift and drag over an angle-of-attack range and for several values of dynamic pressure on a four-tenths scale model of a high-speed airplane equipped with the low-drag wing and with various wing-gun installations. Two installations were tested: one in which the blast tube and part of the gun barrel protrude ahead of the wing and another in which the guns is mounted wholly within the wing. Two types of openings for the latter installation were tested. For each installation three simulated guns were mounted in each wing. The results are given in the form of nondimensional coefficients. The installations tested appear to have little effect on the maximum-lift coefficient of the model. However, the drag coefficient shows a definite change. The least adverse effect was obtained with the completely internal mounting and small nose entrance. The results indicate that a properly designed wing-gun installation will have very little adverse effect on the aerodynamic characteristics of the low-drag wing.
Contributing Partner: UNT Libraries Government Documents Department
The Effects of Aerodynamic Heating on Ice Formations on Airplane Propellers

The Effects of Aerodynamic Heating on Ice Formations on Airplane Propellers

Date: August 1, 1940
Creator: Rodert, Lewis A.
Description: An investigation has been made of the effect of aerodynamic heating on propeller-blade temperatures. The blade temperature rise resulting from aerodynamic heating was measured and the relation between the resulting blade temperatures and the outer limit of the iced-over region was examined. It was found that the outermost station at which ice formed on a propeller blade was determined by the blade temperature rise resulting from the aerodynamic heating at that point.
Contributing Partner: UNT Libraries Government Documents Department
Effects of Direction of Propeller Rotation on the Longitudinal Stability of the 1/10-Scale Model of the North American XB-28 Airplane with Flaps Neutral, Special Report

Effects of Direction of Propeller Rotation on the Longitudinal Stability of the 1/10-Scale Model of the North American XB-28 Airplane with Flaps Neutral, Special Report

Date: June 1, 1942
Creator: Delany, Noel K.
Description: The effects of direction of propeller rotation on factors affecting the longitudinal stability of the XB-28 airplane were measured on a 1/10-scale model in the 7- by 10-foot tunnel of the Ames Aeronautical Laboratory. The main effect observed was that caused by regions of high downwash behind the nacelles (power off as well as power on with flaps neutral). The optimum direction of propeller rotation, both propellers rotating up toward the fuselage, shifted this region off the horizontal tail and thus removed its destabilizing effect. Rotating both propellers downward toward the fuselage moved it inboard on the tail and accentuated the effect, while rotating both propellers right hand had an intermediate result. Comparisons are made of the tail effects as measured by force tests with those predicted from the point-by-point downwash and velocity surveys in the region of the tail. These surveys in turn are compared with the results predicted from available theory.
Contributing Partner: UNT Libraries Government Documents Department
An Electrical-Type Indicating Fuel Flowmeter

An Electrical-Type Indicating Fuel Flowmeter

Date: September 1, 1939
Creator: Tozier, Robert E.
Description: An electrical-type meter has been developed for measuring mass rates of flow of gasoline or other nonconducting fluids. Its temperature dependence is small over a large range and it has no known vibrational or viscosity errors. The maximum temperature rise is less than 5 C. The rates of flow, measurable within 1% with the present instrument, are approximately 100 to 1,000 or more pounds of gasoline per hour when a potentiometer is used, or 100 to 300 pounds per hour when a deflection-type meter is used.
Contributing Partner: UNT Libraries Government Documents Department
Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model, Special Report

Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model, Special Report

Date: April 1, 1937
Creator: Brevoort, Maurice J.
Description: In the design of a cowling a certain pressure drop across the cylinders of a radial air-cooled engine is made available. Baffles are designed to make use of this available pressure drop for cooling. The problem of cooling an air-cooled engine cylinder has been treated, for the most part, from considerations of a large heat-transfer coefficient. The knowledge of the precise cylinder characteristics that give a maximum heat-transfer coefficient should be the first consideration. The next problem is to distribute this ability to cool so that the cylinder cools uniformly. This report takes up the problem of the design of a baffle for a model cylinder. A study has been made of the important principles involved in the operation of a baffle for an engine cylinder and shows that the cooling can be improved 20% by using a correctly designed baffle. Such a gain is as effective in cooling the cylinder with the improved baffle as a 65% increase in pressure drop across the standard baffle and fin tips.
Contributing Partner: UNT Libraries Government Documents Department