UNT Libraries Government Documents Department - 69,068 Matching Results

Search Results

Manufacturability of vertical-cavity surface emitting lasers grown by organometallic vapor phase epitaxy
No Description Available.
Manufacturable CuIn(Ga)Se{sub 2}-based solar cells via development of co-sputtered CuInSe{sub 2} absorber layers
Yield and reproducibility remain issues in CuIn(Ga)Se{sub 2} (CIGS) photovoltaic module fabrication. While small-area cells (<1 cm{sup 2}) over 18% efficient have been reported, the best large-area manufactured devices (>1 ft{sup 2}) are 11% efficient with about 60% yield. If improvements in large-area manufacturing can accomplish 15% efficiency and 90% yield, the result is a doubling in throughput leading to a reduction in cost per watt of over 50%. The challenge now facing the photovoltaics industry is to bring the efficiencies of small-area cells and large-area industrial modules closer together and to raise manufacturing yields.
Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Quarterly report, 1 December 1994--28 February 1995
The overall goal of this project is to assess the technical and economic feasibility for producing feasibility-grade ammonium sulfate from gypsum produced as part of limestone flue gas desulfurization (FGD) processes. This is a cooperative effort among the ISGS, the UIUC, AlliedSignal, SE-ME, Henry Fertilizer, Illinois Power Co. (IP), and Central Illinois Public Services (CIPS). Bench-scale experiments will be conducted to obtain process engineering data for the manufacture of ammonium sulfate from FGD-gypsum and to help evaluate technical and economic feasibility of the process. Controlled greenhouse experiments will be conducted at UIUC to evaluate the chemical impact of coal-derived impurities in ammonium sulfate produced from FGD-gypsum on soil properties. A process flow sheet will be proposed and market demand for the products will be established. An engineering team at IP will provide an independent review of the economics of the process. AlliedSignal will be involved in testing and quality evaluation of ammonium sulfate samples and is interested in an agreement to market the finished product. CIPS will provide technical assistance and samples of FGD -gypsum for the project. In this quarter, with an exception of the neutron activation analysis, analyses of FGD-gypsum samples that were generated by two power stations were completed. The high quality FGD-gypsum sample produced from the Abbott power plant in Champaign, IL was 98.36% gypsum, CaSO{sub 4}{center_dot}2H{sub 2}O, and less than 0.01% calcium`` sulfite, CaSO{sub 3}. The low quality sample from CIPS`s Newton Power Plant at Jasper, Illinois, was only 7.36% of gypsum. It was 87.54% calcium sulfite. A literature search provided the information to set up a batch, bench-scale reactor system. Reactions were conducted at 70{degrees}C for a range of times which resulted in 82% conversion of calcium sulfate to ammonium sulfate.
Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Technical report, March 1--May 31, 1995
Goal is to assess technical and economic feasibility for producing fertilizer-grade ammonium sulfate from gypsum produced in limestone flue gas desulfurization (FGD). This is the 1st year of a 2-year program among Illinois State Geological Survey, University of Illinois (Urbana-Champaign), Allied-Signal, Marketing Chem. Process Inc., Henry Fertilizer, Illinois Power Co., and Central Illinois Public Services. In previous quarter, chemistry and process conditions were reviewed and a reactor system set up and used to conduct laboratory tests. FGD-gypsum from Abbott power plant was used. The scrubber, a Chiyoda Thoroughbred 121 FGD, produced a filter cake (98.36% gypsum and < 0.01% CaSO{sub 3}). Conversion of FGD- gypsum to ammonium sulfate was tested at 60-70{degree}C for 5-6 hr. Yield up to 82% and purity up to 95% were achieved for the ammonium sulfate production. During this quarter, more bench-scale experiments including a mass balance analysis were conducted; a yield up to 83% and up to 99% purity were achieved. A literature survey was completed and a preliminary process flow sheet was developed. Economics of the process is being estimated.
Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Technical report, September 1--November 30, 1994
The overall goal of this project is to assess the technical and economic feasibility for producing commercial-grade ammonium sulfate fertilizer from gypsum produced as part of limestone flue gas desulfurization (FGD) processes. This is a cooperative effort among the ISGS, the UIUC, AlliedSignal, SE-ME, Henry Fertilizer, Illinois Power Co. (IP), and Central Illinois Public Services (CIPS). Bench-scale experiments will be conducted to obtain process engineering data for manufacture of ammonium sulfate from FGD-gypsum and to help evaluate technical and economical feasibility of the process. Controlled greenhouse experiments will be conducted at UIUC to evaluate the chemical impact of the produced ammonium sulfate on soil properties. A process flow sheet will be proposed and market demand for the products will be established. An engineering team at IP will provide an independent review of the economics of the process. AlliedSignal will be involved in testing and quality evaluation of ammonium sulfate samples and is interested in an agreement to market the finished product. CIPS will provide technical assistance and samples of FGD-gypsum for the project. In this quarter, a literature study that should give detailed insight into the chemistry, process schemes, and costs of producing ammonium sulfate from gypsum is in progress at the ISGS. Acquisition of a high quality FGD-gypsum sample was completed. Collecting of the other lower grade sample was scheduled to be conducted in December. Characterization of these feed materials is in progress.
Manufacture of die casting dies by hot isostatic pressing. CRADA final report
The reason for this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Doehler-Jarvis was to investigate the manufacture die-casting dies with internal water-cooling lines by hot-isostatic pressing (HIPing) of H13 tool steel powder. The use of HIPing will allow the near-net-shape manufacture of dies and the strategic placement of water-cooling lines during manufacture. The production of near-net-shape dies by HIPing involves the generation of HIPing diagrams, the design of the can that can be used for HIPing a die with complex details, strategic placement of water-cooling lines in the die, computer modeling to predict movement of the water lines during HIPing, and the development of strategies for placing water lines in the appropriate locations. The results presented include a literature review, particle analysis and characterization of H13 tool steel powder, and modeling of the HIPing process.
Manufactured Home Energy Audit user`s manual
The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.
Manufactured Homes Acquisition Program : Heat Loss Assumptions and Calculations, Heat Loss Coefficient Tables.
This manual is intended to assist builders of manufactured homes in assessing the thermal performance of structural components used in the Manufactured Housing Acquisition Program (MAP) sponsored by the Bonneville Power Administration (BPA). U-factors for these components are calculated using the ASHRAE (1989) parallel heat loss method, with adaptations made for the construction practices found in the Pacific Northwest manufactured home industry. This report is divided into two parts. The first part describes the general assumptions and calculation procedures used to develop U-factors and R-values for specific materials used in the construction industry, overall U-factors for component sections, and the impact of complex framing and thermal configurations on various components' heat loss rates. The individual components of manufactured homes are reviewed in terms of overall thermal conductivity. The second part contains tables showing the results of heat loss calculations expressed as U-factors for various configurations of the major building components: floor systems, ceiling systems, wall systems, windows, doors and skylights. These values can be used to establish compliance with the MAP specifications and thermal performance criteria or to compare manufactured homes built to different standards.
Manufactured Homes Acquisition Program : Heat Loss Assumptions and Calculations, Heat Loss Coefficient Tables.
This manual is intended to assist builders of manufactured homes in assessing the thermal performance of structural components used in the Manufactured Housing Acquisition Program (MAP) sponsored by the Bonneville Power Administration (BPA). U-factors for these components are calculated using the ASHRAE (1989) parallel heat loss method, with adaptations made for the construction practices found in the Pacific Northwest manufactured home industry. This report is divided into two parts. The first part describes the general assumptions and calculation procedures used to develop U-factors and R-values for specific materials used in the construction industry, overall U-factors for component sections, and the impact of complex framing and thermal configurations on various components` heat loss rates. The individual components of manufactured homes are reviewed in terms of overall thermal conductivity. The second part contains tables showing the results of heat loss calculations expressed as U-factors for various configurations of the major building components: floor systems, ceiling systems, wall systems, windows, doors and skylights. These values can be used to establish compliance with the MAP specifications and thermal performance criteria or to compare manufactured homes built to different standards.
Manufactured Homes Simulated Thermal Analysis and Cost Effectiveness Report.
In 1988 and 1989, 150 manufactured homes were built to comply with Super Good Cents (SGC) specifications adapted from the existing specifications for site-built homes under the Residential Construction Demonstration Project (RCDP). Engineering calculations and computer simulations were used to estimate the effects of the SGC specifications on the thermal performance of the homes. These results were compared with consumer costs to establish the cost-effectiveness of individual measures. Heat loss U-factors for windows, walls, floors and ceilings were established using the standard ASHRAE parallel heat flow method. Adjustments resulted in higher U-factors for ceilings and floors than assumed at the time the homes were approved as meeting the SGC specifications. Except for those homes which included heat pumps, most of the homes did not meet the SGC compliance standards. Nonetheless these homes achieved substantial reductions in overall heat loss rate (UA) compared to UAs estimated for the same homes using the standard insulation packages provided by the manufacturers in the absence of the RCDP program. Homes with conventional electric furnaces showed a 35% reduction in total UA while homes with heat pumps had a 25% reduction. A regression analysis showed no significant relationship between climate zone, manufacturer and UA. A modified version of SUNDAY building simulation program which simulates duct and heat pump performance was used to model the thermal performance of each RCDP home as built and the same home as it would have been built without SGC specifications (base case). Standard assumptions were used for thermostat setpoint, thermal mass, internal gains and infiltration rates. 11 refs., 5 figs., 5 tabs.
Manufacturing and coating by kinetic energy metallization
The purpose of this effort was to theoretically model the underlying metal-coating phenomena when metal particles impact a metal surface at high velocities under room temperature conditions. The physical processes involved in the novel metal-coating process called Kinetic Energy Metallization (KEM) have been theoretically and numerically analyzed. A bonding model between the incident and the target metals has been proposed and preliminary numerical results agree reasonably well with the laboratory-obtained metal samples and suggest promise of validity for the present model. However, to put the proposed bonding model on a firmer basis further numerical effort is needed to be carried for various metals and operating conditions.
Manufacturing consumption of energy 1991
This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.
Manufacturing consumption of energy 1994
This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.
Manufacturing fuel-switching capability, 1988
Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.
Manufacturing high reliability weapon grade transformers in small lots
Sandia has used flyback transformers for many years, primarily to charge capacitors for capacitive discharge units. Important characteristics of the transformer design are to meet inductance, turns ratio, and high voltage breakdown requirements as well as not magnetically saturating during each energy transfer cycle. Sandia has taken over production responsibility for magnetic components from a previous GE/LM, General Electric/Lockheed Martin, facility in Florida that produced {approximately} 50 K units per year. Vanguard Electronics is working with Sandia to transfer many of these designs to Vanguard`s small manufacturing facility in Gardena, CA. The challenge is to achieve the required high reliability and meet all the other electrical requirements with such small quantities of parts, {approximately} 100 per year. DOE requirements include high reliability {le} 3 failures per 10,000 components per 20 years while meeting numerous other environmental requirements. The basic design and prove-in required four lots of preproduction parts, extensive environmental testing, and numerous design changes. The manufacturing problems that affected performance of the transformer will be presented. These include encapsulation voids and core alignment. Also, some extended life test data that predicts long term reliability of newly produced transformers versus older designs will be compared.
Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems
This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.
(Manufacturing of the 40/30 mm gated image intensifier tube)
One of EG G's customers is attempting to find a manufacturer to make the 40/30 mm gated image intensifier tube. A request for quotation had been sent out to a number of manufacturers. The tube performance required was not fully defined and the replies, as expected, came back with caveats to cover the areas of uncertainty. The trip was undertaken to discuss the project, to more clearly define the areas of uncertainty and to evaluate the capabilities of the manufacturers.
Manufacturing of ultra-high efficiency thin-film concentrator cells
This report describes a research project to study developments required to expedite commercializing the GaAs solar cell concentrator technology. We baseline the GaAs concentrator cell and 1000X module design into pilot operation at Kopin Corporation. To attain these improvements, we will use Kopin's existing pilot line to produce cleavage of lateral epitaxial film for transfer (CLEFT) GaAs solar cells; these cells already exhibit efficiencies of about 24% at air mass 1.5. We will modify the CLEFT cell to form concentrators that perform well at 500--1000 suns. We will derive the know-how for this modification from an integration of Kopin and VS Corporation technologies. The pilot line will be broadened to include cell receiver and module assembly, using VS Corporation technology obtained from Varian as a baseline. A second-generation design will be formulated to address improvements in the module, and these will be incorporated into the pilot line along with the CLEFT concentrator cell. In parallel, we integrate Kopin's CLEFT GaAs cell technology with the advanced AlGaAs and InGaAs material technology obtained by VS Corporation from Varian to develop a near-term, two-junction mechanical stack with an efficiency of 35%. The receiver thus developed will be compatible with a three-junction approach that has been proposed elsewhere by Kopin. Using a three-junction stack can yield an efficiency of over 40%, and when such cells become available, the pilot line process will have been designed to use them. 11 refs.
Manufacturing of ultra-high efficiency thin-film concentrator cells. Final subcontract report, 9 January 1991--14 April 1991
This report describes a research project to study developments required to expedite commercializing the GaAs solar cell concentrator technology. We baseline the GaAs concentrator cell and 1000X module design into pilot operation at Kopin Corporation. To attain these improvements, we will use Kopin's existing pilot line to produce cleavage of lateral epitaxial film for transfer (CLEFT) GaAs solar cells; these cells already exhibit efficiencies of about 24% at air mass 1.5. We will modify the CLEFT cell to form concentrators that perform well at 500--1000 suns. We will derive the know-how for this modification from an integration of Kopin and VS Corporation technologies. The pilot line will be broadened to include cell receiver and module assembly, using VS Corporation technology obtained from Varian as a baseline. A second-generation design will be formulated to address improvements in the module, and these will be incorporated into the pilot line along with the CLEFT concentrator cell. In parallel, we integrate Kopin's CLEFT GaAs cell technology with the advanced AlGaAs and InGaAs material technology obtained by VS Corporation from Varian to develop a near-term, two-junction mechanical stack with an efficiency of 35%. The receiver thus developed will be compatible with a three-junction approach that has been proposed elsewhere by Kopin. Using a three-junction stack can yield an efficiency of over 40%, and when such cells become available, the pilot line process will have been designed to use them. 11 refs.
Manufacturing research strategic plan
This plan provides an overall strategic roadmap for the DOE-defense programs advanced manufacturing research program which supports the national science based stockpile stewardship program. This plan represents a vision required to develop the knowledge base needed to ensure an enduring national capability to rapidly and effectively manufacture nuclear weapons.
Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure
In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.
Manufacturing tailored property ceramic composites
Composite materials are desirable for many advanced engineering applications where the properties of a single phase material cannot meet all of the service requirements; however, existing process technology has limited the development and commercialization of composites. Lack of reproducible sintering to high density is one of the major obstacles to commercializing ceramic composites. Final-stage, non-reactive liquid phase sintering (NLPS) theory provides metrics for sinterability that can be used as guidelines to design and manufacture dense ceramic-filled-glass (CFG) composites. Additionally, within the constraints defined by the NLPS theory, sum-property models can be used to predict CFG composite properties, and to design composites with properties tailored to specific applications. By integrating composite process models with composite property models, processable, application-tailored CFG composites for microelectronics packaging have been designed and fabricated.
Manufacturing technologies
The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.
Manufacturing technology
The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.
Manufacturing technology
This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.
Manufacturing technology
The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.
Manufacturing technology: A Sandia Technology Bulletin, Volume 1, No. 1
Welcome to this first issue of Manufacturing Technology, one of three new technology bulletins published at Sandia National Laboratories in which we seek to share information with US industry about applications of technology. Inside this issue: industry/DOE/Sandia agreement to strengthen specialty metals competitiveness; silicon micromachining produces microscopic parts; Sandia develops state-of-the-art capacitor winding machine; new robotic system spells finis to manual edge finishing; and milling assistant speeds numerically controlled machine programming.
Manufacturing, Technology, and Competitiveness
This report discusses increases in the productivity of American firms to maintain competitiveness in the international marketplace.
Manufacturing Technology bulletin, July 1994
Inside this issue: (1) Robotic cleaning safer, faster, more reliable; robots taught how to clean in seconds instead of days. (2) Microporous insulating films can boost microcircuit performance; films display improved dielectric constant, mechanical properties, (3) Life-cycle analysis: the big picture; cradle-to-grave environmental analysis tailored to the needs of defense manufacturing, (4) New simulation tool predicts properties of forged metal; internal state variable model improves design, speeds development time.
Manufacturing technology development for CuInGaSe sub 2 solar cell modules
The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{ge}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.
Manufacturing technology development for CuInGaSe{sub 2} solar cell modules. Final subcontract report, 9 January 1991--14 April 1991
The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{&gt;=}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.
Manufacturing technology education development project. Project accomplishment summary for 91-Y12P-050-A1
The purpose of the project was to provide a set of supplemental instructional equipment and materials to Tennessee high school students to raise their level of knowledge about manufacturing technologies with the hope that some of the best and brightest would choose manufacturing as a career path. The role of the Y-12 Plant was primarily technical: renovate the portable classroom; select and purchase appropriate equipment; install and test the equipment; assist in the development of the curriculum; train the initial group of teachers; and provide technical assistance where needed after the laboratory was deployed. The role of the Department of Education was to provide the mobile facility; assist in the design of the laboratory; lead the development of the curriculum; deploy the trailer; and develop the structure for administering the selection of schools, training teachers, and movement of the laboratory. The Department of Education as subcontracted with Middle Tennessee State University to handle the details of laboratory deployment.
Many body theory program
This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have obtained a description of symmetry of the order parameter and pairing state in high-Tc superconductors. They developed a theory of ferromagnetic instability of Fermi-liquid. They have conducted an experimental investigation of the intermetallic compounds and Zintl-type compound. They investigated the properties of Cu-0 ladders. They have developed the theory of liftshitz tails in superconductors. They have conducted a number of summer workshops.
Many Electron Variational Ground State of the Two Dimensional Anderson Lattice
A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions.
Map model for nonlinear alpha particle interaction with toroidal Alfven waves
A map model has been developed for studying the nonlinear interaction of alpha particles with the toroidal Alfven eigenmodes. The map is constructed by assuming a linear interaction during a single poloidal transit, which allows the study of the nonlinear interaction over many transits. By using this map, analytic expressions are obtained for the particle nonlinear bounce frequency, and the wave amplitude threshold for the onset of particle orbit stochasticity. The map model can also facilitate self-consistent simulations which incorporate the time variation of the waves.
Map model for nonlinear alpha particle interaction with toroidal Alfven waves
A map model has been developed for studying the nonlinear interaction of alpha particles with the toroidal Alfven eigenmodes. The map is constructed by assuming a linear interaction during a single poloidal transit, which allows the study of the nonlinear interaction over many transits. By using this map, analytic expressions are obtained for the particle nonlinear bounce frequency, and the wave amplitude threshold for the onset of particle orbit stochasticity. The map model can also facilitate self-consistent simulations which incorporate the time variation of the waves.
Mapping acoustic emissions from hydraulic fracture treatments using coherent array processing: Concept
Hydraulic fracturing is a widely-used well completion technique for enhancing the recovery of gas and oil in low-permeability formations. Hydraulic fracturing consists of pumping fluids into a well under high pressure (1000--5000 psi) to wedge-open and extend a fracture into the producing formation. The fracture acts as a conduit for gas and oil to flow back to the well, significantly increasing communication with larger volumes of the producing formation. A considerable amount of research has been conducted on the use of acoustic (microseismic) emission to delineate fracture growth. The use of transient signals to map the location of discrete sites of emission along fractures has been the focus of most research on methods for delineating fractures. These methods depend upon timing the arrival of compressional (P) or shear (S) waves from discrete fracturing events at one or more clamped geophones in the treatment well or in adjacent monitoring wells. Using a propagation model, the arrival times are used to estimate the distance from each sensor to the fracturing event. Coherent processing methods appear to have sufficient resolution in the 75 to 200 Hz band to delineate the extent of fractures induced by hydraulic fracturing. The medium velocity structure must be known with a 10% accuracy or better and no major discontinuities should be undetected. For best results, the receiving array must be positioned directly opposite the perforations (same depths) at a horizontal range of 200 to 400 feet from the region to be imaged. Sources of acoustic emission may be detectable down to a single-sensor SNR of 0.25 or somewhat less. These conclusions are limited by the assumptions of this study: good coupling to the formation, acoustic propagation, and accurate knowledge of the velocity structure.
Mapping and ordered cloning of the human X chromosome
Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)
Mapping and ordered cloning of the human X chromosome. Final progress report, March 1991--February 1995
A reciprocal probing method is described which uses pooled cDNA probes to order chromosome specific libraries in order to identify cosmids containing sequences capable to hybridizing to the pool. In this pilot study, placental DNA clones were used to identify cosmids from both chromosomes X and 17. Sixty unique cDNA`s were identified of which 22 were novel.
Mapping and ordered cloning of the human X chromosome. Progress report, September 1991--November 1992
Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)
Mapping and sequencing the human genome: Science, ethics, and public policy. Final report
Development of Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy followed the standard process of curriculum development at the Biological Sciences Curriculum Study (BSCS), the process is described. The production of this module was a collaborative effort between BSCS and the American Medical Association (AMA). Appendix A contains a copy of the module. Copies of reports sent to the Department of Energy (DOE) during the development process are contained in Appendix B; all reports should be on file at DOE. Appendix B also contains copies of status reports submitted to the BSCS Board of Directors.
MAPPING MOISTURE DISTRIBUTION IN YUCCA MOUNTAIN USING ELECTRICAL RESISTANCE TOMOGRAPHY
No Description Available.
Mapping of contamination at Savannah River Site FBWU by INEEL trolley
The Ford Building Waste Unit (FBWU) 643-11G is a Resource Conservation and Recovery Act/Comprehensive Environmental Response Compensation and Liability Act (RCRA/CERCLA) designated site at the Savannah River Site (SRS) in Aiken, South Carolina. Pre-Work Plan Characterization at the FBWU in May 1996 indicated that radiological contamination was present in surface and near surface soils and identified cesium-137, {sup 137}Cs, the unit specific contaminant, as being primarily in the top 15 cm of soil. The Idaho National Engineering and Environmental Laboratory (INEEL) sent the dig-face trolley system to SRS where it demonstrated its capability over a 6.1-m (20 ft.) x 9.6-m (30 ft.) area to rapidly map the contamination on-line with its large area plastic scintillation detector. Also, an extended-range (10 keV to 3 MeV) Ge detector was used at selected locations to identify and quantify the {sup 137}Cs contamination. The coordinate locations of each measurement acquired in either the scanning or fixed position mode was obtained with a survey system based on radial encoders. Topography measurements were also made during measurements to permit correction of field of view and activity concentrations for changes in the ground to detector distance.
Mapping of top of permafrost using a direct current resistivity survey
Data from a direct current resistivity survey and geologic logs from boreholes were used to map the top of permafrost at a remote Air Force installation in Alaska. This study resulted from a remedial investigation that was conducted at Eielson Air Force base near Fairbanks, Alaska under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations. The depth and continuity of the permafrost was important in determining the fate of petroleum contamination that was inadvertently discharged to the ground during earlier Air Force operations. The results indicate that the top of permafrost forms a highly irregular surface. In general, however, the top of permafrost forms a diagonal ridge at the center of the contour grid that is bordered on each side by troughs.
Mapping steam and water flow in petroleum reservoirs
Over the past 5 years, we have applied high-resolution geophysical methods (crosswell seismic and electromagnetics (EM), and passive seismic) to map and characterize petroleum reservoirs in the San Joaquin Valley and to monitor changes during secondary recovery operations. The two techniques provide complementary information. Seismic data reveal the reservoir structure, whereas EM measurements are more sensitive to the pore fluid distribution. Seismic surveys at the south Belridge field were used to map fracture generation and monitor formation changes due to the onset of steam flooding. Early results show possible sensitivity to changes in gas saturation caused by the steam flooding. Crosswell EM surveys were applied at a shallow pilot at Lost Hills for reservoir characterization and steamflood monitoring. Images made from baselines data clearly show the distribution of the target oil sands; repeated surveys during the steam flood allowed us to identify the boundaries of the steam chest and to accurately predict breakthrough. Applications of the EM techniques in steel-cased wells are at an early stage, but preliminary results at Lost Hills show sensitivity to formation resistivity in a water-flood pilot. Finally, passive seismic surveys during hydrofracture operations measured events corelatable in frequency content and magnitude with the size and orientation of induced fractures.
Mapping the future of CIC Division, Los Alamos National Laboratory. Final report
This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.
MAPVAR - A Computer Program to Transfer Solution Data Between Finite Element Meshes
MAPVAR, as was the case with its precursor programs, MERLIN and MERLIN II, is designed to transfer solution results from one finite element mesh to another. MAPVAR draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR are described. User instructions are presented. Example problems are included to demonstrate the operation of the code and the effects of various input options.
MAQUILADORAS AND NAFTA: THE ECONOMICS OF U.S.-MEXICO PRODUCTION SHARING AND TRADE
No Description Available.
Maquiladoras and NAFTA: The Economics of U.S.-Mexico Production Sharing and Trade
Debate continues over the benefits of U.S. trade with Mexico, the North American Free Trade Agreement (NAFTA), and particularly maquiladoras, or cross-border production sharing plants. Maquiladoras generate a large portion of U.S.-Mexico trade, yet the economic effects are not widely understood. Many believe there is no benefit to such trade because it leads to the loss of U.S. jobs, production, and wages. Maquiladora products, however, have a high U.S. content that in addition to fostering productivity gains in both countries, may actually minimize the loss of U.S. jobs by allowing the higher paying jobs to stay at home rather than be shipped entirely abroad, for example, to Asia. Still, adjustment to globalized production creates challenges, particularly in addressing the plight of low-skilled workers who become unemployed. Research, however, continues to point to domestic rather than trade policy for the likely solutions, particularly the emphasis on education and training programs.
March 1999 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on March 11, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of the experimental results for the integrated tractor-trailer benchmark geometry called the Sandia Model in the NASA Ames 7 ft x 10 ft wind tunnel. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center.This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.
Back to Top of Screen