You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Resource Type: Report
3-D computer simulations of EM field sin the APS vacuum chamber. Part 2: Time-domain analysis

3-D computer simulations of EM field sin the APS vacuum chamber. Part 2: Time-domain analysis

Date: January 20, 1989
Creator: Chou, W.
Description: Our simulations suggest that the strong peak around 4 GHz in the narrow gap observed in the measurements is generated by TE modes. Therefore, one should not worry about this peak insofar as the coupling impedance is concerned. On the other hand, some discrepancies between our simulations and the measurements are noticed and remain to be resolved.
Contributing Partner: UNT Libraries Government Documents Department
3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis

3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis

Date: September 4, 1990
Creator: Chou, W. & Bridges, J.
Description: The vacuum chamber proposed for the storage ring of the 7-GeV Advanced Photon Source (APS) basically consists of two parts: the beam chamber and the antechamber, connected to each other by a narrow gap. A sector of 1-meter-long chamber with dosed end plates, to which are attached the 1-inch-diameter beampipes centered at the beam chamber, has been built for experimental purposes. The 3-D code MAFIA has been used to simulate the frequency-domain behaviors of EM fields in this setup. The results are summarized in this note and are compared with that previously obtained from 2-D simulations and that from network analyzer measurements. They are in general agreement. A parallel analysis in the time-domain is reported in a separate note. The method of our simulations can be briefly described as follows. The 1-inch diameter beampipes are terminated by conducting walls at a length of 2 cm. The whole geometry can thus be considered as a cavity. The lowest RF modes of this geometry are computed using MAFIA. The eigenfrequencies of these modes are a direct output of the eigenvalue solver E3, whereas the type of each mode is determined by employing the postprocessor P3. The mesh sizes are chosen such that ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Experimental Fracture Analysis at High Temperature

3-D Experimental Fracture Analysis at High Temperature

Date: September 14, 2001
Creator: Jackson, John H. & Kobayashi, Albert S.
Description: T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.
Contributing Partner: UNT Libraries Government Documents Department
3-D Finite Element Analyses of the Egan Cavern Field

3-D Finite Element Analyses of the Egan Cavern Field

Date: February 1, 1999
Creator: Klamerus, E.W. & Ehgartner, B.L.
Description: Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Force-balanced Magnetospheric Configurations

3-D Force-balanced Magnetospheric Configurations

Date: February 10, 2003
Creator: Zaharia, Sorin; Cheng, C. Z. & Maezawa, K.
Description: The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms ...
Contributing Partner: UNT Libraries Government Documents Department
A 3-d modular gripper design tool

A 3-d modular gripper design tool

Date: January 1, 1997
Creator: Brown, R.G. & Brost, R.C.
Description: Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Ray-tracing and 2-D Fokker-Planck Simulations of Radiofrequency Application to Tokamak Plasmas

3-D Ray-tracing and 2-D Fokker-Planck Simulations of Radiofrequency Application to Tokamak Plasmas

Date: May 1, 1999
Creator: Cardinali, A.; Paoletti, F. & Bernabei, S.
Description: A state of the art numerical tool has been developed to simulate the propagation and the absorption of coexisting different types of waves in a tokamak geometry. The code includes a numerical solution of the three-dimensional (R, Z, {Phi}) toroidal wave equation for the electric field of the different waves in the WKBJ approximation. At each step of integration, the two-dimensional (v{sub {parallel}}, v{sub {perpendicular}}) Fokker-Planck equation is solved in the presence of quasilinear diffusion coefficients. The electron Landau damping of the waves is modeled taking into account the interaction of the wave electric fields with the quasilinearly modified distribution function. Consistently, the code calculates the radial profiles of non-inductively generated current densities, the transmitted power traces and the total power damping curves. Synergistic effects among the different type of waves (e.g., lower hybrid and ion Bernstein waves) are studied through the separation of the contributions of the single wave from the effects due to their coexistence.
Contributing Partner: UNT Libraries Government Documents Department
3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

Date: September 9, 2002
Creator: La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John & Eubanks, Darrel
Description: The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Contributing Partner: UNT Libraries Government Documents Department
3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

Date: September 9, 2002
Creator: Pointe, La; Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike & Whitney, John
Description: The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Contributing Partner: UNT Libraries Government Documents Department
3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

Date: September 9, 2002
Creator: La Pointe, Paul R. & Hermanson, Jan
Description: The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Contributing Partner: UNT Libraries Government Documents Department