You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Resource Type: Report
 Decade: 2000-2009
The 0.22 Percent Across-the-Board Cut in FY2001 Appropriations

The 0.22 Percent Across-the-Board Cut in FY2001 Appropriations

Date: May 31, 2001
Creator: Keith, Robert
Description: Report describing changes that affected the government budget for the 2001 fiscal year under the Consolidated Appropriations Act.
Contributing Partner: UNT Libraries Government Documents Department
The 0.38 Percent Across-the-Board Cut in FY2000 Appropriations

The 0.38 Percent Across-the-Board Cut in FY2000 Appropriations

Date: February 25, 2000
Creator: Keith, Robert
Description: This report outlines cuts made in the federal budget for FY2000. The 0.38% cut was expected to yield savings of $2.4 billion in budget authority and $1.4 billion in outlays for the fiscal year. Departments with cuts in excess of $100 million included the Departments of Defense, Transportation, Health and Human Services, and Education.
Contributing Partner: UNT Libraries Government Documents Department
0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

Date: June 9, 2004
Creator: Dashiell, M. W.; Beausang, J. F.; Nichols, G.; Depoy, D. M.; Danielson, L. R.; Ehsani, H. et al.
Description: Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm{sup 2} multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm{sup 2} respectively at operating at temperatures of T{sub radiator} = 950 C and T{sub diode} = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and {approx}0.85 W/cm{sup 2} could be attained under the above operating temperatures.
Contributing Partner: UNT Libraries Government Documents Department
1.5-GeV FFAG Accelerator for the AGS Facility

1.5-GeV FFAG Accelerator for the AGS Facility

Date: February 1, 2004
Creator: Ruggiero, A. G.; Blaskiewicz, M.; Courant, E.; Trbojevic, D.; Tsoupas, N. & Zhang, W.
Description: N/A
Contributing Partner: UNT Libraries Government Documents Department
1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

Date: March 15, 2004
Creator: Geothermal Energy Association
Description: Geothermal Energy Association supports the US geothermal industry in its efforts to bring more clean geothermal energy on-line throughout the world. Activities designed to accomplish this goal include: (1) developing and maintaining data bases, web pages, (2) commissioning of special studies and reports, (3) preparing, printing and distributing brochures and newsletters, (4) developing exhibits and displays, and participating in trade shows, (5) designing, producing and disseminating audio-video materials, (6) monitoring and coordinating programs carried out by US DOE and other Federal agencies, (7) holding workshops to facilitate communication between researchers and industry and to encourage their recognition of emerging markets for geothermal technology, (8) attending conferences, making speeches and presentation, and otherwise interacting with environmental and other renewable energy organizations and coalitions, (9) hosting events in Washington, DC and other appropriate locations to educate Federal, State and local representatives, environmental groups, the news media, and other about the status and potential of geothermal energy, (10) conducting member services such as the preparation and distribution of a member newsletter related to operating and maintaining s useful and viable association, and (11) performing similar kinds of activities designed to inform others about geothermal energy. The activities of the export promotion aim to ...
Contributing Partner: UNT Libraries Government Documents Department
2-D Imaging of Electron Temperature in Tokamak Plasmas

2-D Imaging of Electron Temperature in Tokamak Plasmas

Date: July 8, 2004
Creator: Munsat, T.; Mazzucato, E.; Park, H.; Domier, C. W.; Johnson, M.; Luhmann, N. C., Jr. et al.
Description: By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
Contributing Partner: UNT Libraries Government Documents Department
A 2-D Pore-Network Model of the Drying of Single-Component Liquids in Porous Media

A 2-D Pore-Network Model of the Drying of Single-Component Liquids in Porous Media

Date: January 20, 2000
Creator: Yortsos, Yanic C.; Yiotis, A. G.; Stubos, A. K. & Boundovis, A. G.
Description: The drying of liquid-saturated porous media is typically approaching using macroscopic continuum models involving phenomenological coefficients. Insight on these coefficients can be obtained by a more fundamental study at the pore- and pore-network levels. In this report, a model based on pore-network representation of porous media that accounts for various process at the pore-scale is presented. These include mass transfer by advection and diffusion in the gas phase, viscous flow in liquid and gas phases and capillary effects at the gas-liquid menisci in the pore throats.
Contributing Partner: UNT Libraries Government Documents Department
2-Page Summary for Neptunium solubility in the Near-field Environment of A Proposed Yucca Mountain Repository

2-Page Summary for Neptunium solubility in the Near-field Environment of A Proposed Yucca Mountain Repository

Date: March 29, 2005
Creator: Sassani, D.; van Luik, A. & Summerson, J.
Description: The total system performance assessment (TSPA) for the proposed repository at Yucca Mountain, NV, includes a wide variety of processes to evaluate the potential release of radionuclides from the Engineered Barrier System into the unsaturated zone of the geosphere. The principal processes controlling radionuclide release and mobilization from the waste forms are captured in the model to assess the dissolved concentrations of radionuclides in the source-term. The TSPA model of the source-term incorporates the far-from-equilibrium dissolution of, for example, spent nuclear fuel (SNF) to capture bounding rates of radionuclide availability as the SNF degrades. In addition, for individual radionuclides, the source-term model evaluates solubility constraints that are more indicative of longer-term, equilibrium processes that can limit the potential mass transport from the source term in those cases. These solubility limits represent phase saturation and precipitation processes that can occur either at the waste form as it alters, or at other locations in the near-field environment (e.g., within the invert) if chemical conditions are different. Identification and selection of applicable constraints for solubility-limited radionuclide concentrations is a primary focus in formulating the source-term model for the TSPA. Neptunium is a long-lived radionuclide that becomes a larger fraction of the potential dose ...
Contributing Partner: UNT Libraries Government Documents Department
3.1.1.2 Feed Processing and Handling DL2 Final Report

3.1.1.2 Feed Processing and Handling DL2 Final Report

Date: September 30, 2006
Creator: Elliott, Douglas C.; Magnuson, Jon K. & Wend, Christopher F.
Description: This milestone report is the deliverable for our Feed Processing and Handling project. It includes results of wet biomass feedstock analysis, slurry pumping information, fungal processing to produce a lignin-rich biorefinery residue and two subcontracted efforts to quantify the amount of wet biomass feedstocks currently available within the corn processing and paper processing industries.
Contributing Partner: UNT Libraries Government Documents Department
3-D Cavern Enlargement Analyses

3-D Cavern Enlargement Analyses

Date: March 1, 2002
Creator: EHGARTNER, BRIAN L. & SOBOLIK, STEVEN R.
Description: Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Experimental Fracture Analysis at High Temperature

3-D Experimental Fracture Analysis at High Temperature

Date: September 14, 2001
Creator: Jackson, John H. & Kobayashi, Albert S.
Description: T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.
Contributing Partner: UNT Libraries Government Documents Department
3-D Force-balanced Magnetospheric Configurations

3-D Force-balanced Magnetospheric Configurations

Date: February 10, 2003
Creator: Zaharia, Sorin; Cheng, C. Z. & Maezawa, K.
Description: The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

Date: September 9, 2002
Creator: La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John & Eubanks, Darrel
Description: The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Contributing Partner: UNT Libraries Government Documents Department
3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

Date: September 9, 2002
Creator: Pointe, La; Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike & Whitney, John
Description: The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Contributing Partner: UNT Libraries Government Documents Department
3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

Date: September 9, 2002
Creator: La Pointe, Paul R. & Hermanson, Jan
Description: The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Contributing Partner: UNT Libraries Government Documents Department
3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

Date: September 9, 2002
Creator: La Pointe, Paul R.; Hermanson, Jan & Eiben, Thorsten
Description: The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
Contributing Partner: UNT Libraries Government Documents Department
3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

Date: November 18, 2002
Creator: Pointe, Paul La; Hermanson, Jan; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Steele, Ken et al.
Description: This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require ...
Contributing Partner: UNT Libraries Government Documents Department
3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

Date: February 16, 2007
Creator: Bhattacharya, Janok P. & McMechan, George A.
Description: None
Contributing Partner: UNT Libraries Government Documents Department
3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

Date: February 16, 2007
Creator: Bhattacharya, Janok P. & McMechan, George A.
Description: This project examined the internal architecture of delta front sandstones at two locations within the Turonian-age Wall Creek Member of the Frontier Formation, in Wyoming. The project involved traditional outcrop field work integrated with core-data, and 2D and 3D ground penetrating radar (GPR) imaging from behind the outcrops. The fluid-flow engineering work, handled through a collaborative grant given to PI Chris White at LSU, focused on effects on fluid flow of late-stage calcite cement nodules in 3D. In addition to the extensive field component, the work funded 2 PhD students (Gani and Lee) and resulted in publication of 10 technical papers, 17 abstracts, and 4 internal field guides. PI Bhattacharya also funded an additional 3 PhD students that worked on the Wall Creek sandstone funded separately through an industrial consortium, two of whom graduated in the fall 2006 ((Sadeque and Vakarelov). These additional funds provided significant leverage to expand the work to include a regional stratigraphic synthesis of the Wall Creek Member of the Frontier Formation, in addition to the reservoir-scale studies that DOE directly funded. Awards given to PI Bhattacharya included the prestigious AAPG Distinguished Lecture Award, which involved a tour of about 25 Universities and Geological Societies in ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

Date: December 1, 2004
Creator: Levander, Alan R.
Description: Under ER63662, 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface, we have completed a number of subprojects associated with the Hill Air Force Base (HAFB) high resolution 3-D reflection/tomography dataset.
Contributing Partner: UNT Libraries Government Documents Department
3-D Seismic Exploration Project, Ute Indian Tribe, Uintah and Ouray Reservation, Uintah County, Utah

3-D Seismic Exploration Project, Ute Indian Tribe, Uintah and Ouray Reservation, Uintah County, Utah

Date: September 9, 2002
Creator: Eckels, Marc T.
Description: The objectives of this North Hill Creek 3-D seismic survey were to: (1) cover as large an area as possible with available budget; (2) obtain high quality data throughout the depth range of the prospective geologic formations of 2,000' to 12,000' to image both gross structures and more subtle structural and stratigraphic elements; (3) overcome the challenges posed by a hard, reflective sandstone that cropped out or was buried just a few feet below the surface under most of the survey area; and (4) run a safe survey.
Contributing Partner: UNT Libraries Government Documents Department
3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

Date: July 14, 2003
Creator: Majer, E.L.
Description: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill ...
Contributing Partner: UNT Libraries Government Documents Department
3-D Spectral IP Imaging: Non-Invasive Characterization DE FG02 96ER 14714

3-D Spectral IP Imaging: Non-Invasive Characterization DE FG02 96ER 14714

Date: June 1, 2000
Creator: Morgan, F. Dale; Rodi, William & Lesmes, David
Description: The Earth Resources Laboratory (ERL) performed a broad foundational study of spectral induced polarization (SIP) for site characterization. The project encompassed laboratory studies of microgeometry and chemistry effects on Induced Polarization (IP), an investigation of electromagnetic coupling (emc) noise, and development of 3D modeling and inversion codes. The major finding of the project is that emc noise presents a critical limitation for field implementation of SIP and conventional correction methods are inadequate. The project developed a frequency domain 3D complex resistivity modeling and inversion code Laboratory experiments were conducted to study the effects of solution chemistry and microgeometry on the SIP response of sandstone. Results indicate that changes in chemistry affect the magnitude of the spectral IP response and changes in microgeometry affect the shape of the spectral IP response. The developed physiochemical IP model can be used to invert spectral IP data for an apparent grain size distribution. Laboratory studies over the last twenty years have shown that SIP data must be acquired over several decades of frequency and include frequencies greater than 1kHz. A model of the components of emc noise has been developed and investigation with this model showed that inductive coupling is the most significant component. ...
Contributing Partner: UNT Libraries Government Documents Department
3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS

3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS

Date: November 1, 2000
Creator: MOREL, J.; MCGHEE, J. & AL, ET
Description: This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We have developed a method for solving the neutral-particle transport equation on 3-D unstructured hexahedral meshes using a S{sub n} discretization in angle in conjunction with a discontinuous finite-element discretization in space and a multigroup discretization in energy. Previous methods for solving this equation in 3-D have been limited to rectangular meshes. The unstructured-mesh method that we have developed is far more efficient for solving problems with complex 3-D geometric features than rectangular-mesh methods. In spite of having to make several compromises in our spatial discretization technique and our iterative solution technique, our method has been found to be both accurate and efficient for a broad class of problems.
Contributing Partner: UNT Libraries Government Documents Department
FIRST PREV 1 2 3 4 5 NEXT LAST