Search Results

Inherently safe nuclear-driven internal combustion engines
A family of nuclear driven engines is described in which nuclear energy released by fissioning of uranium or plutonium in a prompt critical assembly is used to heat a working gas. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled from 100 MW on up. 7 refs., 3 figs.
Nuclear thermal rocket clustering: 1, A summary of previous work and relevant issues
A general review of the technical merits of nuclear thermal rocket clustering is presented. A summary of previous analyses performed during the Rover program is presented and used to assess clustering in the context of projected Space Exploration Initiative missions. A number of technical issues are discussed including cluster reliability, engine-out operation, neutronic coupling, shutdown core power generation, shutdown reactivity requirements, reactor kinetics, and radiation shielding. 7 refs., 3 figs., 2 tabs.
PHIGS PLUS for scientific graphics
This paper gives a brief overview of the use of computer graphics standards in the scientific community. It particularly details how how PHIGS PLUS meets the needs of users at the Lawrence Livermore National Laboratory. Although standards for computer graphics have improved substantially over the past decade, their acceptance in the scientific community has been slow. As the use and diversity of computers has increased, the scientific graphics libraries have not been able to keep pace with the additional capabilities these new machines offer. Therefore, several organizations have or are now working on converting their scientific libraries to reset upon a portable standard. This paper will address why is transition has been so slow and offer suggestions for future standards work to enhance scientific visualization. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
A sendmail. cf scheme for a large network
Like most large networked sites our users depend heavily on the electronic mail system for both internal and off-site communications. Unfortunately the sendmail.cf file, which is used to control the behavior of the sendmail program, is somewhat cryptic and difficult to decipher for the neophyte. So, on one hand you have a highly visible, frequently used utility, and on the other hand a not-so-easily acquired system administration forte. Here is the sendmail topology of our site, what premises we based it on, and the parts of the sendmail.cf files which support the topology.
Technology transfer from the space exploration initiative
Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper.
Technology transfer from the space exploration initiative
Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America`s competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper.
Back to Top of Screen