Search Results

284-E Powerhouse trench engineering study
This document provides the basis for future use of the 284-E Powerhouse Trench as a transport conduit for effluents discharged from the 284-E Powerhouse in accordance with the requirements of the State Waste Discharge Permit, ST 4502.
18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program
This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.
Achieving high performance in numerical computations on RISC workstations and parallel systems
The nominal peak speeds of both serial and parallel computers is raising rapidly. At the same time however it is becoming increasingly difficult to get out a significant fraction of this high peak speed from modern computer architectures. In this tutorial the authors give the scientists and engineers involved in numerically demanding calculations and simulations the necessary basic knowledge to write reasonably efficient programs. The basic principles are rather simple and the possible rewards large. Writing a program by taking into account optimization techniques related to the computer architecture can significantly speedup your program, often by factors of 10--100. As such, optimizing a program can for instance be a much better solution than buying a faster computer. If a few basic optimization principles are applied during program development, the additional time needed for obtaining an efficient program is practically negligible. In-depth optimization is usually only needed for a few subroutines or kernels and the effort involved is therefore also acceptable.
Additional guidance for including nuclear safety equivalency in the Canister Storage Building and Cold Vacuum Drying Facility final safety analysis report
This document provides guidance for the production of safety analysis reports that must meet both DOE Order 5480.23 and STD 3009, and be in compliance with the DOE regulatory policy that imposes certain NRC requirements.
Analysis of intergranular impurity concentration and the effects on the ductility of copper shaped charge jets
A geometrical analysis based on an assumed tetrakaidecahedron grain shape is applied to determine the relationship among grain size, bulk impurity content, and breakup time in sulfur-doped, high-precision, 81-mm, oxygen-free electronic (ofe) copper shaped charge liners. The calculations determine the number of impurity atoms as a function of grain size, the number of available sites at the intercrystalline defects, and the intercrystalline impurity concentration. Recent experiments have shown that some larger grain size liners with low impurity contents exhibit better ductility than smaller grain size liners with higher impurity concentrations. Within the range of grain sizes and bulk impurity contents in this study, the analysis suggests that the quadruple nodes and triple lines are saturated with impurities. Over this same range of impurities and grain sizes, only partial filling of a monolayer of impurities exists at the grain boundaries. The analysis suggests that breakup time is fundamentally related to grain boundary impurity concentration.
APT generation of long-lived radionuclides to include greater than Class C low-level radioactive waste requiring special disposal considerations
The Accelerator Production of Tritium (APT) Facility will generate radioactive waste during routine operations of the plant. All of the waste generated will be Low Level Radioactive Waste (LLRW) or Mixed Low Level Waste (MLLW). Some APT wastes to be generated contain combinations of short lived and long lived radionuclides exceeding the current Waste Acceptance Criteria (WAC) of all Department of Energy (DOE) disposal locations. Some of the wastes would be classified Greater Than Class C (GTCC) LLRW under the Nuclear Regulatory Commission. The Nuclear Regulatory Commission (NRC) specifies a geologic repository for GTCC wastes. The Department of Energy specifies in 5820.2A geologic disposal shall comply with both Nuclear Regulatory Commission regulations and EPA standards.
Area 2 Photo Skid Wastewater Pit corrective action decision document Corrective Action Unit Number 332: Part 1, and Closure report: Part 2
The Area 2 Photo Skid Wastewater Pit, Corrective Action Site (CAS) Number 02-42-03, the only CAS in Corrective Action Unit (CAU) Number 332, has been identified as a source of unquantified, uncontrolled, and unpermitted wastewater discharge. The Photo Skid was used for photographic processing of film for projects related to weapons testing, using Kodak RA4 and GPX film processing facilities for black and white and color photographs. The CAU is located in Area 2 of the Nevada Test Site, Nye County, Nevada. The CAS consists of one unlined pit which received discharged photographic process wastewater from 1984 to 1991. The Corrective Action Decision Document (CADD) and the Closure Report (CR) have been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CADD and the CR for this CAS have been combined because sample data collected during the site investigation do not exceed regulatory limits established during the Data Quality Objectives (DQO) process. The purpose of the CADD and the CR is to justify why no corrective action is necessary at the CAU based on process knowledge and the results of the corrective action investigation and to request closure of the CAU. This document contains Part 1 of the CADD and Part 2 of the CR.
A Balanced Budget Constitutional Amendment: Background and Congressional Options
One of the most persistent political issues facing Congress in recent years is whether to require that the budget of the United States be in balance. Although a balanced federal budget has long been held as a political ideal, the accumulation of large deficits in recent years has heightened concern that some action to require a balance between revenues and expenditures may be necessary. The debate over a balanced budget measure actually consists of several interrelated debates, which this report addresses.
Bicriteria Network Design Problems
The authors study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a subgraph from a given subgraph class that minimizes the second objective subject to the budget on the first. They consider three different criteria -- the total edge cost, the diameter and the maximum degree of the network. Here, they present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, they develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same they present a black box parametric search technique. This black box takes in as input an (approximation) algorithm for the criterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs they use a cluster based approach to devise approximation algorithms. The solutions violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, they provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. The authors show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.
A Brief Introduction to the Federal Budget Process
This report consists of a brief introduction to the federal budget process.
A Brief Introduction to the Federal Budget Process
This report provides a brief introduction to the federal budget process. Key budget concepts and terminology are defined and explained. The separate procedures that make up the federal budget process are identified and their salient features described. While a complete understanding of federal budgeting probably can be obtained only after much observation and study of the process in operation, broad exposure to its rudiments is a useful first step. Various resources “for additional reading” are identified at the end of this report, which the reader may find helpful in exploring the subject in greater depth.
Calculation note for an underground leak which remains underground
This calculation note supports the subsurface leak accident scenario which remains subsurface. It is assumed that a single walled pipe carrying waste from tank 106-C ruptures, releasing the liquid waste into the soil. In this scenario, the waste does not form a surface pool, but remains subsurface. However, above the pipe is a berm, 0.762 m (2.5 ft) high and 2.44 m (8 ft) wide, and the liquid released from the leak rises into the berm. The slurry line, which transports a source term of higher activity than the sluice line, leaks into the soil at a rate of 5% of the maximum flow rate of 28.4 L/s (450 gpm) for twelve hours. The dose recipient was placed a perpendicular distance of 100 m from the pipe. Two source terms were considered, mitigated and unmitigated release as described in section 3.4.1 of UANF-SD-WM-BIO-001, Addendum 1. The unmitigated consisted of two parts of AWF liquid and one part AWF solid. The mitigated release consisted of two parts SST liquid, eighteen parts AWF liquid, nine parts SST solid, and one part AWF solid. The isotopic breakdown of the release in these cases is presented. Two geometries were considered in preliminary investigations, disk source, and rectangular source. Since the rectangular source results from the assumption that the contamination is wicked up into the berm, only six inches of shielding from uncontaminated earth is present, while the disk source, which remains six inches below the level of the surface of the land is often shielded by a thick shield due to the slant path to the dose point. For this reason, only the rectangular source was considered in the final analysis. The source model was a rectangle 2.134 m (7 ft) thick, 0.6096 m (2 ft) high, and 130.899 m (131 ft) long. The …
Central waste complex interim operational safety requirements
This Interim Operational Safety Requirements document supports the authorization basis for interim operations and identifies restrictions on interim operations for the disposal and storage of solid waste in the Central Waste Complex. The Central Waste Complex Interim Operational Safety Requirements provide the necessary controls on operations in the Central Waste Complex to ensure the radiological and hazardous material exposure will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, 1327 the public and the environment.
Challenges in the development of sensors for monitoring automobile emissions
A new generation of on-board automotive sensors are needed for diagnosis and control of engines and catalytic converters. With regard to catalytic converters, the intent of these regulations is to ensure that the vehicle operator is informed when emission control system are no longer performing adequately. In order to be commercialized, sensors for emission control must meet certain criteria, including low cost, reliability, and manufacturability. We have been developing solid state electrochemical sensors for emission control. Most recently, our work has focused on the development of hydrocarbon sensors for monitoring catalytic converter performance. Previous work was concerned with the development of an oxygen sensor having appropriate sensitivity for lean-burn engines. Operational limits for oxygen sensors have been defined and new materials have been developed for hydrocarbon sensors. Technical results are presented here as well as challenges to be met in the development of materials and designs for new chemical sensors for monitoring automotive emissions.
COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN
Environmental and economical concerns over diminishing landfill space and the growing abundance of mixed plastic waste mandate development of viable strategies for recovering high-valued resources from waste polymers. Co-processing of waste polymer mixtures with coal allows for the simultaneous conversion of coal and plastics into high-valued fuels. However, there is limited information about the underlying reaction pathways, kinetics, and mechanisms controlling coal liquefaction in the presence of polymeric materials. A series of model compound experiments has been conducted, providing a starting point for unraveling the complex, underlying chemistry. Neat pyrolysis studies of model compounds of polyethylene and coal were conducted in batch reactors. Tetradecane (C{sub 14} H{sub 30} ) was used as a polyethylene mimic, and 4-(naphthylmethyl)bibenzyl (NBBM) was used as a coal model compound. Reaction temperatures were 420 and 500 C, and batch reaction times ranged from 5--150 minutes. Detailed product analysis using gas chromatography and mass spectrometry enabled the reactant conversion and product selectivities to be determined. Reaction of single components and binary mixtures allowed the kinetic coupling between feedstocks to be examined.
Coldmass for Lhc Dipole Insertion Magnets.
Brookhaven National Laboratory (BNL) is building a number of magnets for the insertion regions of the Large Hadron Collider (LHC). This paper presents the magnetic design and the expected field quality in 2-in-1 dipole magnets. A unique feature of this coldmass design is the use of an oblate-shaped yoke. This concept permits a variety of BNL-built magnets to have a similar overall design and allows the LHC main dipole cryostat, post, etc., to be used in these magnets. The proposed oblate-shaped yoke also offers a way to reduce the overall cryostat size in future magnets. The dipoles will use the same 80 mm aperture coils as used in the Relativistic Heavy Ion Collider (RHIC) dipole magnets, but will use stainless steel collars. The design presented here is still evolving and the magnets may be built differently than described here.
Common causes of material degradation in buried piping
Buried pipe may fail for innumerable reasons. Causes can be mechanical damage/breakage, chemically initiated corrosion, or a combination. Failures may originate either internally or externally on the pipe. They may be related to flaws in the design, to excessive or unanticipated internal pressure or ground level loading, and/or to poor or uncertain installation practice. Or the pipe may simply ``wear out`` in service. Steel is strong and very forgiving in underground applications, especially with regard to backfill. However, soil support developed through densification or compaction is critical for brittle concrete and vitrified clay tile pipe, and is very important for cast iron and plastic pipe. Chemistry of the soil determines whether or not it will enhance corrosion or other types of degradation. Various causes and mechanisms for deterioration of buried pipe are indicated. Some peculiarities of the different materials of construction are characterized. Repair methods and means to circumvent special problems are described.
Comparison of CASIM with the LAHET Code System
The CASIM Monte Carlo Program has been used for shielding calculations at RHIC. In the most common application, the "star density" is calculated at some (usually transverse) depth in some medium assumed to have a few percent water by weight (soil or concrete). In cases where the location of the source is not known, the maximum star density in the beam direction is used to evaluate the adequacy of the transverse shielding.
Computational physical oceanography -- A comprehensive approach based on generalized CFD/grid techniques for planetary scale simulations of oceanic flows. Final report, September 1, 1995--August 31, 1996
The original intention for this work was to impart the technology that was developed in the field of computational aeronautics to the field of computational physical oceanography. This technology transfer involved grid generation techniques and solution procedures to solve the governing equations over the grids thus generated. Specifically, boundary fitting non-orthogonal grids would be generated over a sphere taking into account the topography of the ocean floor and the topography of the continents. The solution methodology to be employed involved the application of an upwind, finite volume discretization procedure that uses higher order numerical fluxes at the cell faces to discretize the governing equations and an implicit Newton relaxation technique to solve the discretized equations. This report summarizes the efforts put forth during the past three years to achieve these goals and indicates the future direction of this work as it is still an ongoing effort.
Computer software configuration management plan for the Honeywell modular automation system
This document provides a Computer Software management plan for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This type of system will be used to control new thermal stabilization furnaces, a vertical denitrator calciner, and a pyrolysis furnace.
Confinement and Tritium Stripping Systems for APT Tritium Processing
This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.
CSER 96-027: storage of cemented plutonium residue containers in 55 gallon drums
A nuclear criticality safety analysis has been performed for the storage of residual plutonium cementation containers, produced at the Plutonium Finishing Plant, in 55 gallon drums. This CSER increases the limit of total plutonium stored in each 55 gallon drum from 100 to 200 grams.
Data analysis of tokamak experiments with singular value decomposition. Final report
Under the grant, the applicant has developed a method of identifying poloidal and toroidal modes active in tokamak plasmas. Except complicated situations the method has shown to work well. Even with the limited applications, the advantage from the method is significant and even crucial. The method can be used to identify: (1) responsible coherent modes such as MHD or Resistive modes activity in plasma; (2) onset of instabilities; and can be used for (3) plasma controls. The method has been applied to the DIII-D tokamak experimental data, and some results are presented in this report. The authors also present how the method can be used for plasma controls.
Depth profiling of polishing-induced contamination on fused silica surfaces
Laser-induced damage on optical surfaces is often associated with absorbing contaminants introduced by the polishing process. This is particularly the case for UV optics. Here secondary ion mass spectroscopy (SIMS) was used to measure depth profiles of finished process contamination on fused silica surfaces. Contaminants detected include the major polishing compound components (Ce or Zr from CeO2 or ZrO2), Al presently largely because of the use of Al2O3 in the final cleaning process (Fe, Cu,Cr) incorporated during the polishing step or earlier grinding steps. Depth profile data typically showed an exponential decay of contaminant concentration to a depth of 100-200 nm. This depth is consistent with a polishing redeposition layers formed during the chemo-mechanical polishing of fused silica. Peak contaminant levels are typically in the 10-100 ppm range, except for Al with exceeds 1000 ppm. A strong correlation has been shown between the presence of a gray haze damage morphology and the use of CeO2 polishing compound. No strong correlation was found however between high levels of Ce, or any other contaminant and the low damage threshold was observed. In fact one of the strongest indications of a correlation is between increased damage thresholds and increased Zr contamination. This suggests that the correlation between redeposition layer and laser damage threshold is not simple an absorbing contaminant issue.
Description of the Canadian particulate-fill waste-package (WP) system for spent-nuclear fuel (SNF) and its applicability to light-water reactor SNF WPs with depleted uranium-dioxide fill
The US is beginning work on an advanced, light-water reactor (LWR), spent nuclear fuel (SNF), waste package (WP) that uses depleted uranium dioxide (UO{sub 2}) fill. The Canadian nuclear fuel waste management program has completed a 15-year development program of its repository concept for CANadian Deuterium Uranium (CANDU) reactor SNF. As one option, Canada has developed a WP that uses a glass-bead or silica-sand fill. The Canadian development work on fill materials inside WPs can provide a guide for the development of LWR SNF WPs using depleted uranium (DU) fill materials. This report summarizes the Canadian work, identifies similarities and differences between the Canadian design and the design being investigated in the US to use DU fill, and identifies what information is applicable to the development of a DU fill for LWR SNF WPs. In both concepts, empty WPs are loaded with SNF, the void space between the fuel pins and the outer void space between SNF assemblies and the inner WP wall would be filled with small particles, the WPs are then sealed, and the WPs are placed into the repository.
The design and fabrication of a 6 Tesla EBIT solenoid
No Description Available.
Design, operation, and evaluation of the transportable vitrification system
The Transportable Vitrification System (TVS) is a transportable melter system designed to demonstrate the treatment of low-level and mixed hazardous and radioactive wastes such as wastewater treatment sludges, contaminated soils and incinerator ash. The TVS is a large-scale, fully integrated vitrification system consisting of melter feed preparation, melter, offgas, service, and control modules. The TVS was tested with surrogate waste at the Clemson University Environmental Systems Engineering Department`s (ESED) DOE/Industry Center for Vitrification Research prior to being shipped to the DOE Oak Ridge Reservation (ORR) K-25 site for treatment of mixed waste. This testing, along with additional testing at ORR, proved that the TVS would be able to successfully treat mixed waste. These surrogate tests consistently produced glass that met the EPA Toxicity Characteristic Leaching Procedure (TCLP). Performance of the system resulted in acceptable emissions of regulated metals from the offgas system. The TVS is scheduled to begin mixed waste operations at ORR in June 1997.
Detector and front-end electronics of a fissile mass flow monitoring system
A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described.
Development and assessment of the CONTAIN hybrid flow solver
A new gravitational head formulation for the treatment of stratified flows has been developed for CONTAIN, a lumped-parameter code used primarily for the analysis of postulated accidents in nuclear power plants. This new hybrid formulation is discussed and compared in this paper with the old, average-density CONTAIN formulation. In addition, these formulations are assessed against experimental data from three large-scale experiments in which stratified conditions were observed. These are the NUPEC M-8-1, Surtsey ST-3, and the HDR E11.2 experiments.
The development of straightness measuring equipment. Final report
This report details work performed between Lockheed Martin Energy Systems, Inc. (LMES) and UTE Straight-O-Matic (UTE) under the National Machine Tool Partnership program. This work included the design and construction of an automatic straightness measuring system capable of retrofitting to existing machines. 1 fig.
Developments in limited data image reconstruction techniques for ultrahigh-resolution x-ray tomographic imaging of microchips
The use of soft x-ray (about 1.8 KeV) nanotomography techniques for the evaluation and failure mode analysis of microchips was investigated. Realistic numerical simulations of the imaging process were performed and a specialized approach to image reconstruction from limited projection data was devised. Prior knowledge of the structure and its component materials was used to eliminate artifacts in the reconstructed images so that defects and deviations from the original design could be visualized. Simulated data sets were generated with a total of 21 projections over three different angular ranges: -50 to +50, - 80 to +80 and -90 to +90 degrees. In addition, a low level of illumination was assumed. It was shown that sub-micron defects within one cell of a microchip (< 10 pm3) could be imaged in 3-D using such an approach.
Economic Sanctions to Achieve U.S. Foreign Policy Goals: Discussion and Guide to Current Law
This report provides background on the range of actions that might be termed foreign policy sanctions and the events that might necessitate their use. Criteria are offered that legislators might consider to judge when sanctions might be appropriate, approaches that might be effective, aspects of the use of sanctions that are sometimes overlooked or not considered fully. The report provides an uncomplicated "map" of where sanctions policies and options currently lay in U. S. law.
Effect of buoyancy and externally induced forces on the solidification of binary mixtures. Final report, August 1, 1987--July 31, 1997
Research performed under this contract originated with the premise that much could be done to improve existing techniques for modeling the effects of convection on solidification in mixtures by eliminating arbitrary characterizations of the mushy region and its coupling with the melt. It was therefore proposed that a set of continuum conservation equations be derived from the principles of classical mixture theory and that the model concurrently treat melt, mushy and solid regions as a single domain (a continuum). The conservation equations would accommodate all pertinent convection effects, and closure would be achieved by assuming local composition equilibrium at phase interfaces. The need for simplifying assumptions concerning the geometric regularity of the interfaces would be eliminated, along with the need for separately tracking the interfaces and using moving numerical grids and/or coordinate mapping procedures. Accordingly, specific objectives of the work have been to (i) develop models and procedures for simultaneously solving the coupled set of conservation equations which govern mass, momentum, energy and species transfer for solidification in a mixture, (ii) use the models to predict, as a function of time and over a representative range of operating conditions, velocity, temperature, and composition fields throughout solid, mushy and liquid regions of analog and metal alloys, (iii) validate model predictions by visualizing flows and performing temperature and concentration measurements under test cell conditions which simulate those of the computations, and (iv) delineate mechanisms responsible for macrosegregation and develop control strategies for its suppression. Studies were performed for the unidirectional solidification of NH{sub 4}Cl-H{sub 2}O and Pb-Sn and Pb-Sn-Sb alloys.
Effect of impurities and stress on the damage distributions of rapidly grown KDP crystals
Development of high damage threshold, 50 cm, rapidly grown KF*P frequency triplers for operation of the National Ignition Facility (NIF) in the 14 J/cm2, 351 nm, 3 ns regime requires a thorough understanding of how the crystal growth parameters and technologies affect laser induced damage. Of particular importance is determining the effect of ionic impurities (e.g. Cr3+, Fe3+, Al3+) which may be introduced in widely varying concentrations via starting salts. In addition, organic particulates can contaminate the solution as leachants from growth platforms or via mechanical ablation. Mechanical stresses in the crystals may also play a strong role in the laser-induced damage distribution (LIDD), particularly in the cases of large boules where hydrodynamic forces in the growth tank may be quite high. WE have developed a dedicated, automated damage test system with diagnostic capabilities specifically designed for measured time resolved bulk damage onset and evolution. The data obtained make it possible to construct characteristic damage threshold distributions for each sample. Test results obtained for a variety of KDP samples grown from high purity starting salts and individually doped with Lucite and Teflon, iron, chromium, and aluminium show that the LIDD drops with increasing contamination content. The results also show that solution filtration leads to increased damage performance for undoped crystals but is not solely responsibility for producing the high LIDDs required by the NIF. The highest LIDD measured on a rapidly grown sample indicate that it is possible to produce high damage threshold material using ultrahigh purity, recrystallized starting salts, continuous filtration and a platform designed to minimize internal stress during growth.
An evaluation of the 1997 JPL Summer Teacher Enhancement Program
There were two major components in the Jet Propulsion Laboratory (JPL) Summer Teacher Enhancement Project (STEP). First, the Summer Institute was structured as a four-week, 4-credit-unit University course for middle school science teachers, and consisted of workshops, lectures, labs, and tours as activities. The second component consists of follow-up activities related to the summer institute's contents, and again is structured as a University credit-bearing course for participants to reinforce their summer training. Considerable information from the comments and course ratings as given by the participants is included.
Event mapping meeting
A one-day meeting was held by the authors to evaluate how the strategic lab workshops would tie to this year`s tactical planning exercise. In particular, they wanted to find recent events that would support the tactical goal decisions of the Lab, and they wanted to find events that verify the Lab`s present course. The events which are each briefly discussed are: Galvin Commission recommends consolidating DOE defense labs (1995); Congressional subcommittee staff force budget cuts and consolidation (1995); 28% of DOE/DP budget held back pending completion of a clear 5-yr plan for nukes (1995); DOD and DOE focus on dual use (1995); LANL work includes weapons rebuilds (1995); LANL chosen by DOE to develop and test advanced remediation techniques (1995); AGEX/DARHT Project is stopped by suits from environmental activities (1996); Non-proliferation treaty renewed (1996); US complies with Comprehensive Test Ban Treaty (1996); Capability based deterrence policy put into place (1998); Stockpile shrinks to approximately 2000 weapons (2005); DOE weapons labs re-chartered as true national labs (1996); DOE terminates all nuclear weapons testing support (1996); Industrial projects at LANL up 20% from previous year (1997); NIST-ATP Program becomes an interagency process (1997); DOE warns that spent commercial reactor fuels is a major proliferation threat (1998); Non-lethal weapons work helps to reshape LANL image (1998); Global warning theory proven (2005); Overall US spending on science has been flat or decreasing for three years (1998); and Economic role of LANL in northern New Mexico declines (2005).
Final characterization and safety screen report of double shell tank 241-AP-105 for evaporator campaign 97-1
Evaporator candidate feed from tank 241-AP-105 (hereafter referred to as AP-105) was characterized for physical, inorganic, organic and radiochemical parameters by the 222-S Laboratory as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4, and Engineering Change Notice, number 635332, Reference 5. This data package satisfies the requirement for a format IV, final report as described in Reference 1. This data package is also a follow-up to the 45-Day safety screen results for tank AP-105, Reference 8, which was issued on November 5, 1996, and is attached as Section II to this report. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance P1an, References 6 and 7. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation.
Final report for LDRD Project 94-ERD-037: multi-scale atmospheric simulation system
The purpose of this LDRD project was to develop a multi-scale atmospheric simulation system that could be applied to a diverse range of atmospheric problems, including key research issues related to global and regional climate change, studies of regional and local precipitation, and emergency predictions of the path and exposure concentration of toxic materials released into the atmosphere. In addition to its multi-scale nature, the new simulation system was to be designed such that the individual components of the system could be selected by users in an optimal way to support the research and operational needs of the entire Atmospheric Sciences Division.
FY97 ICCS prototype specification
The ICCS software team will implement and test two iterations of their software product during FY97. The first of these iterations will concentrate on construction of selected framework components; the subsequent iteration will extend the product and perform measurements of performance based on emulated FEP devices. This document specifies the products to be delivered in that first prototype and projects the direction that the second prototype will take. Detailed specification of the later iteration will be written when the results of the first iteration are complete. The selection of frameworks to be implemented early is made on a basis of risk analysis from the point of view of future development in the ICCS project. The prototype will address risks in integration of object- oriented components, in refining our development process, and in emulation testing for FEP devices. This document is a specification that identifies products and processes to undertake for resolving these risks. The goals of this activity are to exercise our development process at a modest scale and to probe our architecture plan for fundamental limits and failure modes. The product of the iterations will be the framework software which will be useful in future ICCS code. Thus the FY97 products are intended for internal usage by the ICCS team and for demonstration to the FEP software developers of the strategy for integrating supervisory software with FEP computers. This will be the first of several expected iterations of the software development process and the performance measurements that ICCS will demonstrate, intended to support confidence in our ability to meet project RAM goals. The design of the application software is being carried out in a separate WBS 1.5.2 activity. The design activity has as its FY97 product a series of Software Design Documents that will specify the functionality of the …
Generalized System of Preferences
This report provides information about the Generalized System of Preferences which provides duty free treatment for products that are imported from some designated countries. The main purpose is to promote economic growth.
Generalized System of Preferences
This report provides information about the Generalized System of Preferences which provides duty-free treatment for products that are imported from some designated countries. The main purpose is to promote economic growth.
Geology and Petrophysical Characterization of the Ferron Sandstone for 3-D Simulation of a Fluvial-Deltaic Reservoir Quarterly Report: January 1 - March 31, 1997
The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Four activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone in the Ivie Creek case-study area: (1) regional stratigraphic interpretation, (2) case-study evaluation, (3) reservoir modeling, and (4) technology transfer.
GPHS-RTGs in support of the Cassini Mission. Semi annual technical report, 30 September 1996--30 March 1997
The technical progress achieved during the period 27 January through 30 September 1996 through 30 March 1997 on Contract DE-AC03-91SF18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described. This report is organized by program task structure: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; ETG fabrication, assembly, and test; ground support equipment (GSE); RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair; and CAGO acquisition (capital funds).
GPHS-RTGs in support of the Cassini Mission. Semi annual technical report, March 31, 1997--September 28, 1997
This progress report describes work on the Radioisotope Thermoelectric Generators and Ancillary Activities carried out as part of the Cassini project. Seperate sections of the report describe activities carried out in support of different tasks assigned as part of this contract.
Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options
Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.
Hindered diffusion of asphaltenes at evaluated temperature and pressure: Semiannual technical report, September 20, 1996-March 20, 1997
During this time period, the high temperature/high pressure autoclave, received from Parr Instrument Company, has been set up and checked out. A detailed autoclave operation procedure was developed and implemented. The system reproducibility was verified by performing several runs for the uptake of quinoline in mineral oil onto Al{sub 2}0{sub 3} indicating that the system is reproducible, with an error of less than 10%. The effect of external mass transfer was studied by the uptake of quinoline in mineral oil onto Al{sub 2}0{sub 3} at different stirring speeds, varying from 100 rpm to 800 rpm. The results showed that when the stirring speed was greater than 100 rpm, the effect of external mass transfer was negligible. Objectives 1. To investigate the hindered diffusion of coal and petroleum asphaltenes in the pores of catalyst particles at elevated temperature and pressures. 2. To examine the effects of concentration, temperature, solvent type, and pressure on the intraparticle diffusivity of asphaltenes.
History of ultrahigh carbon steels
The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.
Honeywell modular automation system computer software documentation
This document provides a Computer Software Docuemntation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-21I.
An in-house alternative to traditional SDI services at Argonne National Laboratory
Selective Dissemination of Information (SDIs) are based on automated, well-defined programs that regularly produce precise, relevant bibliographic information. Librarians have typically turned to information vendors such as Dialog or STN international to design and implement these searches for their users in business, academia, and the science community. Because Argonne National Laboratory (ANL) purchases the Institute for Scientific Information (ISI) Current Contents tapes (all subject areas excluding Humanities). ANL scientists enjoy the benefit of in-house developments with BASISplus software programming and no longer need to turn to outside companies for reliable SDI service. The database and its customized services are known as ACCESS (Argonne Current Contents Electronic Search Service). Through collaboration with librarians on Boolean logic and selection of terms, users can now design their own personal profiles to comb the new data, thereby avoiding service fees from outside providers. Based on the feedback from scientists, it seems that this new service can help transform the ANL distributed libraries into more efficient central functioning entities that better serve the users. One goal is to eliminate the routing of paper copies of many new journal issues to different library locations for users to browse; instead users may be expected to rely more on electronic dissemination of both table of contents and customized SDIs for new scientific and technical information.
Laser conditioning study of KDP on the optical sciences laser using large area beams
Considerable attention has been paid over the years to the problem of growing high purity KDP and KD*P to meet threshold requirements on succeeding generations of inertial confinement fusion lasers at LLNL. While damage thresholds for these materials have increased over time, the current National Ignition Facility (NIF) maximum fluence requirement (redline) for KD*P frequency triplers of 14.3 J/cm{sup 2} at 351 nm, 3 ns has not been reached without laser (pre)conditioning. It is reasonable to assume that, despite the rapid increase in damage thresholds for rapidly grown crystals, -a program of large scale conditioning of the 192 NIF triplers will be required. Small area ramp (R/1) tests on single sites indicate that KDP damage thresholds can be raised on average up to 1.5X the unconditioned values. Unpublished LLNL 3{omega} raster conditioning studies on KDP, however, have not conclusively shown that off-line conditioning is feasible for KD*P. Consequently, investigating the feasibility of on-line conditioning of NIF triplers at 3{omega} has become a high priority for the KDP damage group at LLNL. To investigate the feasibility of on-line conditioning we performed a series of experiments using the Optical Sciences Laser (OSL) on numerous samples of conventional and rapid growth KDP and KD*P. The experiment entailed exposing sites on each sample to a range of ramped shot (N/l) sequences starting at average fluences of -2 J/cm{sup 2} (in a 7 mm ``top hat`` beam @ 351 nm, 3 ns) up to peak fluences of approximately 13 J/cm{sup 2}. Test results indicated that the most effective conditioning procedure entailed a 7-8 shot ramp starting at 2 J/cm{sup 2} and ending at 12-13 J/cm{sup 2}. The pinpoint onset fluence for the 8/1 tests was 1.4 times that of the unconditioned site. Damage evolution appears to be exponential as a function of increasing fluence. When …
Back to Top of Screen