Search Results

10 microsecond time resolution studies of Cygnus X-1
Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M{sub {circle_dot}} black hole.
The addition of disilanes to cumulenes
The syntheses of silicon-containing compounds and the studies of their rearrangements have been active research areas in the Barton research group. Previously, the addition of disilanes to acetylenes was studied in the group and an intramolecular 2S + 2A mechanism has been proposed. In this thesis, the work is focused on the addition of disilanes to cumulenes. The syntheses of the precursors are discussed and the possible mechanisms for their thermal, photochemical and catalytic rearrangements are proposed. Conjugated organic polymers have been studied in the group since 1985 because of their potential for exhibiting high electroconductivity, photoconductivity, strong non-linear optical response and intense fluorescence. In the second section of this dissertation, the synthesis and property studies of poly(phenylene vinylene) analogues are discussed.
Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor
An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of {alpha}-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on {alpha}-particle loss has led to a better understanding of {alpha}-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing {alpha}-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90{degree} lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an {alpha}-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized {alpha}-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.
Atomic holography with electrons and x-rays: Theoretical and experimental studies
Gabor first proposed holography in 1948 as a means to experimentally record the amplitude and phase of scattered wavefronts, relative to a direct unscattered wave, and to use such a {open_quotes}hologram{close_quotes} to directly image atomic structure. But imaging at atomic resolution has not yet been possible in the way he proposed. Much more recently, Szoeke in 1986 noted that photoexcited atoms can emit photoelectron of fluorescent x-ray wavefronts that are scattered by neighboring atoms, thus yielding the direct and scattered wavefronts as detected in the far field that can then be interpreted as holographic in nature. By now, several algorithms for directly reconstructing three-dimensional atomic images from electron holograms have been proposed (e.g. by Barton) and successfully tested against experiment and theory. Very recently, Tegze and Faigel, and Grog et al. have recorded experimental x-ray fluorescence holograms, and these are found to yield atomic images that are more free of the kinds of aberrations caused by the non-ideal emission or scattering of electrons. The basic principles of these holographic atomic imaging methods are reviewed, including illustrative applications of the reconstruction algorithms to both theoretical and experimental electron and x-ray holograms. The author also discusses the prospects and limitations of these newly emerging atomic structural probes.
Compliance program for 40 CFR 61, Subpart H at Los Alamos National Laboratory
Effective on March 15, 1990, the Environmental Protection Agency established regulations controlling the emission of radionuclides to the air from Department of Energy facilities to limit the dose to the public to 10 mrem/yr. These regulations are detailed in 40 CFR 61, Subpart H, {open_quotes}National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities{close_quotes}. Part of these regulations require the operation of sampling systems on stacks meeting certain requirements. Although Los Alamos National Laboratory has a long history of stack sampling, the systems in place at the time the regulation became effective did not meet the specific design requirements of the new regulation. In addition, certain specific program elements did not exist or were not adequately documented. The Los Alamos National Laboratory has undertaken a major effort to upgrade its compliance program to meet the requirements of USEPA. This effort involved: developing new and technically superior sampling methods and obtaining approval from the Environmental Protection Agency for their use; negotiating specific methodologies with the Environmental Protection Agency to implement certain requirements of the regulation: implementing a complete, quality assured, compliance program; and upgrading sampling systems. After several years of effort, Los Alamos National Laboratory now meets all requirements of the USEPA.
Construction of artificial pigment-protein antennae
Photosynthesis is a complex process which results in the conversion of solar radiation into chemical energy. This chemical energy is then used as the free energy source for all living organisms. In its basic form, photosynthesis can be described as the light-activated synthesis of carbohydrates from the simple molecules of water and carbon dioxide: 6H{sub 2}O + 6 CO{sub 2} light C{sub 6}H{sub 12}O{sub 6} + 6 O{sub 2} This basic mechanism actually requires numerous reaction steps. The two primary steps being: the capture of light by pigment molecules in light-harvesting antenna complexes and the transfer of this captured energy to the so-called photochemical reaction center. While the preferred pathway for energy absorbed by the chromophores in the antenna complexes is transfer to the reaction center, energy can be lost to competing processes such as internal conversion or radiative decay. Therefore, the energy transfer must be rapid, typically on the order of picoseconds, to successfully compete. The focus of the present work is on the construction of light-harvesting antenna complexes incorporating modular pigment-proteins.
Decision making in a non-profit engineering environment
A conceptual management framework is developed and applied in a science and engineering organization located within a non-profit, public institution. The goal of this research is to select a set of projects whose combined contributions to the organization`s strategic interests satisfy sponsor desires and can be completed within existing time and resource constraints. The development of the rationale for project selection and implementation within the plutonium facility at Los Alamos National Laboratory is studied. This includes the integration of prioritization decision tools, optimization techniques, and advanced planning and scheduling tools. The Nuclear Materials Technology Division is the custodian of the plutonium facility, whose mission is to develop, demonstrate, and deploy technologies necessary to address the nation`s and world`s plutonium problems. This includes management of nuclear weapon stockpile components, stabilization of plutonium residues, clean-up of contaminated soils and facilities, support to non-proliferation and arms control initiatives, and the eventual disposition of surplus plutonium. In this study, projects are evaluated against selection criteria deemed to be of critical program importance. The Analytic Hierarchy Process is used to evaluate and rank the importance of the suite of candidate projects. Because individual projects may be of interest to a number of business sectors and sponsors, the approach must be capable of using funding sources in an integrated manner in order to meet overall facility and program strategies. Finally, project planning and scheduling tools are integrated into the decision network in order to ensure that appropriate resource leveling occurs and that the actual project selection takes into account the temporal relationships among available resources.
Design, synthesis, characterization and study of novel conjugated polymers
After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.
Development and application of thin-layer spectroelectrochemical techniques for the study of organosulfur monolayers adsorbed at gold
A main research interest is the characterization of monolayers formed by the spontaneous adsorption of organosulfur compounds at gold. This dissertation describes the development and application of long optical pathlength thin-layer spectroelectrochemistry in an attempt to address key issues regarding the reactivity of surface-immobilized molecules. The first section of this introductory chapter briefly describes the general approach to the preparation and characterization of these films. The last section provides an overview of the main principles and advantages of thin-layer spectroelectrochemistry for studying surface-adsorbed species. The body of this dissertation is divided into four chapters. Chapter 2 consists of a paper describing the design, construction, and characterization of a cuvette-based LOPTLC. Chapter 3 is a paper which examines the reductive desorption process using thin-layer spectroelectrochemistry to monitor and identify the desorption product. Chapter 4 is a paper describing the characterization of monolayers functionalized with a catechol terminal group which serves as a redox transformable coordination site for metal ion binding. Chapter 5 discusses the application of thin-layer spectroelectrochemistry to acid-base reactivity studies of surface-immobilized molecules. The final section provides some general conclusions and a prospectus for future studies. These chapters have been processed separately for inclusion on the data base. This report contains the introduction, references, and general conclusions. 78 refs.
Development in the design and performance of gas avalanche microdetectors (MSGC, MGC, and MDOT)
There has been continuing development of generic classes of microstrip gas chambers (MSGCs), microgap gas chambers (MGCs) and microdot gas chambers (MDOTs) at Lawrence Berkeley National Laboratory (LBNL) over the past few years, to improve such detectors beyond their present capabilities, to produce detectors suitable for use in current or upcoming experiments, and to allow a basis for new R&D developments which may incorporate these detectors as part of the system. All of these new detectors are collectively referred to as {open_quotes}gas avalanche microdetectors{close_quotes}. The MSGC, which was motivated by the pioneering work of A. Oed, has many attractive features, especially excellent spatial resolution ({approximately}30 {mu}m rms at normal incidence) and high rate capability ({approximately}10{sup 6} mm{sup -2}{center_dot}s{sup -1}). Moreover, the MGC seems to have certain advantages over the MSGC in speed, stability and simplicity, and the MDOT has larger gain (>10{sup 4}) and the intrinsic advantages of two-dimensional readout. Because of these attractive properties, they have received a great deal of attention for nuclear and high energy physics experiments, medical X-ray imaging and many other fields requiring radiation detection and measurement.
The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors
Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.
Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method
This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.
Direct methods for dynamic monitoring of secretions from single cells by capillary electrophoresis and microscopy with laser-induced native fluorescence detection
Microscale separation and detection methods for real-time monitoring of dynamic cellular processes (e.g., secretion) by capillary electrophoresis (CE) and microscopic imaging were developed. Ultraviolet laser-induced native fluorescence (LINF) provides simple, sensitive and direct detection of neurotransmitters and proteins without any derivatization. An on-column CE-LINF protocol for quantification of the release from single cell was demonstrated. Quantitative measurements of both the amount of insulin released from and the amount remaining in the cell ({beta}TC3) were achieved simultaneously. Secretion of catecholamines (norepinephrine (NE) and epinephrine (E)) from individual bovine adrenal chromaffin cells was determined using the on-column CE-LINF. Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved by LINF imaging microscopy with high temporal and spatial resolution. The secretion of serotonin from individual leech Retzius neurons was directly characterized by LINF microscopy with high spatial resolution.
The discovery of high-redshift supernovae and their cosmological implications
In this thesis the author discusses the methodology for doing photometry: from procedure of extracting supernova counts from images that contain combined supernova plus galaxy flux, to standard star calibration, to additional instrumental corrections that arise due to the multiple telescopes used for observations. He discusses the different sources of photometric error and their correlations, and the construction of the covariance matrix for all the points in the light curve. He then describes the K corrections which account for the redshifting of spectra that are necessary to compare the photometry of the high-redshift data with those from nearby (z < 0.1) supernovae. Finally, he uses the first seven of the supernovae to test the hypothesis that they live in an under-dense bubble where the locally measured Hubble constant differs significantly from the true Hubble constant. He also uses the data to place limits on the value of the Hubble constant. Discussions of several other important aspects of the data analysis are or will be included in other papers. These topics include a description of how the covariance matrix is used to generate light-curve fits, a discussion of non-photometric systematic errors that also effect the measurements, and a discussion of the application of the supernovae to address other scientific/cosmological problems.
A disoriented chiral condensate search at the Fermilab Tevatron
MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of {open_quotes}disoriented vacuum{close_quotes} might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity {eta} {approx} 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.
Donor spectroscopy at large hydrostatic pressures and transport studies in compound semiconductors
In the first part of this work, the author describes studies of donors in AlSb and in GaAs at large hydrostatic pressures, two materials in which the conduction band minimum is not parabolic, but has a camel`s back shape. These donors were found to display only one or two absorption lines corresponding to ground to bound excited state transitions. It is shown that due to the non-parabolic dispersion, camel`s back donors may have as few as one bound excited state and that higher excited states are auto-ionized. Thus, it is possible that transitions to these other states may be lost in the continuum. In the second part, calculations of mobilities in GaN and other group III-Nitride based structures were performed. GaN is interesting in that the carriers in nominally undoped material are thought to originate from impurities which have an ionization energy level resonant with the conduction band, rather than located in the forbidden gap. These donors have a short range potential associated with them which can be effective in scattering electrons in certain situations. It was found that effects of these resonant donors can be seen only at high doping levels in III-Nitride materials and in Al{sub x}Ga{sub 1{minus}x}N alloys, where the defect level can be pushed into the forbidden gap. Calculations were also performed to find intrinsic mobility limits in Al{sub x}Ga{sub 1{minus}x}N/GaN modulation doped heterostructures. Theoretical predictions show that electron mobilities in these devices are capable of rivaling those found in the best Al{sub x}Ga{sub 1{minus}x}As/GaAs heterostructures structures today. However, the currently available nitride heterostructures, while displaying mobilities superior to those in bulk material, have sheet carrier concentrations too large to display true two-dimensional electron gas behavior.
Effect of microscale protrusions on local fluid flow and mass transport in the presence of forced convection
Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.
Electrochemically-modulated liquid chromatography (EMLC): Column design, retention processes, and applications
This work describes the continued development of a new separation technique, electrochemically-modulated liquid chromatography (EMLC), from column design, retention mechanisms to pharmaceutical applications. The introduction section provides a literature review of the technique as well as a brief overview of the research in each of the chapters. This section is followed by four chapters which investigate the issues of EMLC column design, the retention mechanism of monosubstituted aromatic compounds, and the EMLC-based applications to two important classes of pharmaceutical compounds (i.e., corticosteroids and benzodiazepines). These four sections have been removed to process separately for inclusion on the database. The dissertation concludes with a general summary, a prospectus, and a list of references cited in the General Introduction. 32 refs.
Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces
The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a {sup 13}C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.
Equilibrium vortex motion in two- and three-dimensional superconductors studied with a dc SQUID
The equilibrium motion of vortices in two- and three-dimensional superconductors has been studied with a dc Superconducting QUantum Interference Device (SQUID). This technique has the advantage of probing the system in a non-invasive manner as well as providing dynamic information over many decades in frequency. Through measurements of the spectral density of magnetic flux noise, S{sub {Phi}}({omega}), as a function of temperature and applied magnetic field, the effects of proton and heavy ion irradiation on flux noise in crystals of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} have been measured and compared with the effects on the critical current, J{sub c}. Both proton and heavy ion irradiation proved effective at reducing S{sub {Phi}}({omega}), with proton irradiation having a larger effect. Measurement of S{sub {Phi}}({omega}) due to the equilibrium Kosterlitz-Thouless-Berezinskii transition in two-dimensional Josephson Junction Arrays (JJAs) was studied as a function of temperature for three different arrays and using three different sensors. S{sub {Phi}} is shown to obey dynamic scaling over as many as five decades in frequency, and estimates are made for the dynamic critical exponent z. An analytic theory for the high- and low-frequency behavior of S{sub {Phi}}({omega}) is presented and compared to the measured data, with the result that the low-frequency behavior is well described by the theory but the high-frequency behavior is not. Other theories and numerical simulations are described and compared with the data, but none are completely satisfactory. Lastly, suggestions for necessary further theoretical work and possible future experimental work are suggested.
Extreme ultraviolet interferometry
EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high …
Fabrication and electronic transport studies of single nanocrystal systems
Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.
Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids
We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.
Fundamental studies of hydrogen chemisorption on supported monometallic and bimetallic catalysts using microcalorimetry
Highly dispersed transition metal catalysts are used in numerous commercial processes such as hydrocarbon conversions. For example, the use of Pt supported on acidic alumina or silica-alumina for reforming of naphtha in the production of gasoline is well known. Another use of supported catalysts is in automobile emission control where supported Pt-Rh bimetallic catalysts are used. Supported Ru can be used in Fischer-Tropsch synthesis for the production of higher hydrocarbons from synthesis gas. While many of these catalyst systems have been in commercial operation for several decades there is still a lack of consensus regarding the exact role of the catalyst on a molecular level. In particular, little is known about the mechanisms operating on the catalyst surface at the high pressure and high temperature conditions typically used in commercial operations. This report contains the general introduction and conclusions and an appendix containing the operating instructions for a microcalorimeter. Three chapters have been processed separately. They are: the effect of K on the kinetics and thermodynamics of hydrogen adsorption on Ru/SiO{sub 2}; hydrogen adsorption states on silica supported Ru-Ag and Ru-Cu bimetallic catalysts investigated via microcalorimetry; a comparative study of hydrogen chemisorption on silica supported Ru, Rh, and Pt.
Generation and characterization of superradiant undulator radiation
High-power, pulsed, coherent, far-infrared (FIR) radiation has many scientific applications, such as pump-probe studies of surfaces, liquids, and solids, studies of high-T{sub c} superconductors, biophysics, plasma diagnostics, and excitation of Rydberg atoms. Few sources of such FIR radiation currently exist. Superradiant undulator radiation produced at the SUNSHINE (Stanford UNiversity SHort INtense Electron-source) is such a FIR source. First proposed in the mm-wave spectral range by Motz, superradiant undulator radiation has been realized in the 45 {micro}m to 300 {micro}m spectral range by using sub-picosecond electron bunches produced by the SUNSHINE facility. The experimental setup and measurements of this FIR radiation are reported in this thesis. In addition, to being a useful FIR source, the superradiant undulator radiation produced at SUNSHINE is an object of research in itself. Measured superlinear growth of the radiated energy along the undulator demonstrates the self-amplification of radiation by the electron bunch. This superlinear growth is seen at 47 {micro}m to 70 {micro}m wavelengths. These wavelengths are an order of magnitude shorter than in previous self-amplification demonstrations.
The Growth of Thin Epitaxial Copper Films on Ruthenium (0001)and Oxygen-Precovered Ruthenium (0001) as studied by x-rayphotoelectron diffraction. University of California, Davis, Department of Physics, Ph.D. Thesis
In the first part of this dissertation, the variation of mean emitter depths with direction for core photoelectron emission from single crystals, including the effects of both isotropic inelastic scattering and single and multiple elastic scattering was theoretically studied. The mean emitter depth was found to vary by as much as &plusmn;30% with direction. In the second part of this dissertation, x-ray photoelectron diffraction (XPD) was used to study the structure and growth mechanisms of Cu films grown on a clean and an oxygen-precovered Ru(OOO1) surface. Experimental Cu 2p3/2 (E<sub>kin</sub> = 556 eV) and Ru 3d (E<sub>kin</sub> = 1205 eV) intensities were measured for Cu coverages from submonolayer up to several monolayer (ML) on the clean Ru(OOO1) surface. In addition, the O 1s (E<sub>kin</sub> = 958 eV) intensity was measured for Cu grown on oxygen precovered Ru(OOO1). These XPD intensities have been analyzed using single scattering cluster (SSC) and multiple scattering cluster (MSC) models. The first Cu layer has been found to grow pseudomorphically on the Ru(OOO1) surface in agreement with prior studies of the Cu/Ru(OOO 1) system. Thus, the initial growth is layer-by-layer. For higher coverages, XPD shows that the short-range structure of the Cu films is fcc Cu(l 11), but with significant interlayer relaxation (compared to bulk Cu(l 11)) that persists up to {ge}8 ML. When oxygen is preadsorbed on the Ru(OOO1) surface before Cu film growth (possibly to act as a surfactant promoting smoother growth), XPD shows that the first ~3 ML of Cu grow as 3-D islands. In addition, XPD shows that, during Cu growth, all of the oxygen "floats" on the CU surface, in contrast to prior studies which found that 30% of the oxygen remains at the Cu/Ru intetiace. XPD also indicates that the oxygen is highly disordered on the Cu overlayer surface. In …
High transition-temperature SQUID magnetometers and practical applications
The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO{sub 3}-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz{sup {minus}1/2} at 1 Hz and 8.5 fT Hz{sup {minus}1/2} at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz{sup {minus}1/2} at 1 Hz and 18 fT Hz{sup {minus}1/2} at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.
Hydrogen local vibrational modes in semiconductors
Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.
Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography
Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 {micro}l injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few {micro}l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.
Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection
The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio {sup 63}Cu{sup +}/{sup 65}Cu{sup +} is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio {sup 52}Cr{sup +}/{sup 53}Cr{sup +} (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr{sup +} signal to 0.12% for the ratio of {sup 51}V{sup +} to {sup 52}Cr{sup +}. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li{sup +} signal becomes apparent. Space charge effects are consistent with the disturbances seen.
The interaction of katabatic winds and mountain waves
The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.
The interfacial and surface properties of thin Fe and Gd films grown on W(110) as studied by scanning tunneling microscopy, site-resolved photoelectron diffraction, and spin polarized photoelectron diffraction
Combined scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) measurements from Gd films grown on W(110) prepared with and without annealing have been used to provide a detailed picture of the growth of such films, permitting a quantitative structural explanation for previously-measured magnetic properties and the identification of a new two-dimensional structure for the first monolayer. The analysis of the film roughness of room-temperature-grown films as a function of coverage and lateral length scale reveals that the growing Gd surface follows scaling laws for a self-affine surface. Annealing these as-deposited films at elevated temperatures is found to drastically alter the morphology of the films, as seen by both STM and LEED. Nanometer-scale islands of relatively well-defined size and shape are observed under certain conditions. Finally, the first monolayer of Gd is observed to form a (7x14) superstructure with pseudo-(7x7) symmetry that is consistent with a minimally-distorted hexagonal two-dimensional Gd(0001) film. Furthermore, a new beamline and photoelectron spectrometer/diffractometer at the Advanced Light Source have been used to obtain full-solid-angle and site-specific photoelectron diffraction (PD) data from interface W atoms just beneath (1x1) Fe and (7x14) Gd monolayers on W(110) by utilizing the core level shift in the W 4f{sub 7/2} spectrum. A comparison of experiment with multiple scattering calculations permits determining the Fe adsorption site and the relative interlayer spacing to the first and second W layers. These Fe results are also compared to those from the very different Gd overlayer and from the clean W(110) surface. Such interface PD measurements show considerable promise for future studies. Finally, the rare-earth ferromagnetic system of Gd(0001) has been examined through the use of spin polarized photoelectron diffraction from the Gd 4s and 5s photoelectron multiplets.
An inverse free electron laser accelerator: Experiment and theoretical interpretation
Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 {mu}m CO{sub 2} laser have been carried out at Brookhaven`s Accelerator Test Facility. An energy gain of 2.5 % ({Delta}E/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator.
Laser: a Tool for Optimization and Enhancement of Analytical Methods
In this work, we use lasers to enhance possibilities of laser desorption methods and to optimize coating procedure for capillary electrophoresis (CE). We use several different instrumental arrangements to characterize matrix-assisted laser desorption (MALD) at atmospheric pressure and in vacuum. In imaging mode, 488-nm argon-ion laser beam is deflected by two acousto-optic deflectors to scan plumes desorbed at atmospheric pressure via absorption. All absorbing species, including neutral molecules, are monitored. Interesting features, e.g. differences between the initial plume and subsequent plumes desorbed from the same spot, or the formation of two plumes from one laser shot are observed. Total plume absorbance can be correlated with the acoustic signal generated by the desorption event. A model equation for the plume velocity as a function of time is proposed. Alternatively, the use of a static laser beam for observation enables reliable determination of plume velocities even when they are very high. Static scattering detection reveals negative influence of particle spallation on MS signal. Ion formation during MALD was monitored using 193-nm light to photodissociate a portion of insulin ion plume. These results define the optimal conditions for desorbing analytes from matrices, as opposed to achieving a compromise between efficient desorption and efficient ionization as is practiced in mass spectrometry. In CE experiment, we examined changes in a poly(ethylene oxide) (PEO) coating by continuously monitoring the electroosmotic flow (EOF) in a fused-silica capillary during electrophoresis. An imaging CCD camera was used to follow the motion of a fluorescent neutral marker zone along the length of the capillary excited by 488-nm Ar-ion laser. The PEO coating was shown to reduce the velocity of EOF by more than an order of magnitude compared to a bare capillary at pH 7.0. The coating protocol was important, especially at an intermediate pH of 7.7. The increase of …
Liquid phase epitaxial growth of GaAs
Research into new semiconductor materials for measurement of electromagnetic radiation over a wide range of energies has been an active field for several decades. There is a strong desire to identify and develop new materials which can lead to improved detectors. Such devices are expected to solve problems that cannot be solved using the semiconductor materials and device structures which have been traditionally used for radiation detection. In order for a detector which is subjected to some type of irradiation to respond, the radiation must undergo an interaction with the detector. The net result of the radiation interaction in a broad category of detectors is the generation of mobile electric charge carriers (electrons and/or holes) within the detector active volume. This charge is collected at the detector contacts and it forms the basic electrical signal. Typically, the collection of the charge is accomplished through the imposition of an electric field within the detector which causes the positive and/or negative charges created by the radiation to flow in opposite directions to the contacts. For the material to serve as a good radiation detector, a large fraction (preferably 100%) of all carriers created by the interacting incident radiation must be collected. Charge trapping by deep level impurities and structural defects can seriously degrade detector performance. The focus of this thesis is on far infrared and X-ray detection. In X-ray detector applications of p-I-n diodes, the object is to measure accurately the energy distribution of the incident radiation quanta. One important property of such detectors is their ability to measure the energy of individual incident photons with high energy resolution.
A measurement of the tau Michel parameters at SLD
This thesis presents a measurement of the tau Michel parameters. This measurement utilizes the highly polarized SLC electron beam to extract these quantities directly from the measured tau decay spectra using the 1993--95 SLD sample of 4,528 tau pair events. The results are {rho}{sup e} = 0.71 {+-} 0.14 {+-} 0.05, {xi}{sup e} = 1.16 {+-} 0.52 {+-} 0.06, and ({xi}{delta}){sup e} = 0.85 {+-} 0.43 {+-} 0.08 for tau decays to electrons and {rho}{sup {mu}} = 0.54 {+-} 0.28 {sup {minus}} 0.14, {eta}{sup {mu}} = {minus}0.59 {+-} 0.82 {+-} 0.45, {xi}{sup {mu}} = 0.75 {+-} 0.50 {+-} 0.14, and ({xi}{delta}){sup {mu}} = 0.82 {+-} 0.32 {+-} 0.07 for tau decays to muons. Combining all leptonic tau decays gives {rho} = 0.72 {+-} 0.09 {+-} 0.03, {xi} = 1.05 {+-} 0.35 {+-} 0.04, and {Xi}{delta} = 0.88 {+-} 0.27 {+-} 0.04. These results agree well with the current world average and the Standard Model.
Measurement of the top quark mass
This dissertation describes the measurement of the top quark mass m{sub t} using events recorded during a 125 pb{sup -1} exposure of the D0 detector to {radical}s=1.8 TeV {anti p}p collisions. Six events consistent with the hypothesis t{anti t} {yields} bW{sup +}, {anti b}W{sup -} {yields} b{anti l}{nu}, {anti b}l{anti {nu}} form the dilepton sample. The kinematics of such events may be reconstructed for any assumed mt, and the likelihood of each such solution evaluated. A measurement of m{sub t} based on these relative solution likelihoods gives m{sub t} = 169.9 {+-} 14.8 (stat.) {+-} 3. 8 (syst.) GeV/c{sup 2}. A 2C kinematic fit is performed on a sample of 77 events consistent with t{anti t} {yields} bW{sup +}, {anti b}W{sup -} {yields} b{anti l}{nu}, {anti b}q{anti q} , and this, in combination with an estimate on the likelihood that each event is top, yields m{sub t} = 173.3 {+-} 5.6 (stat.) {+-} 6.2 (syst.) GeV/c{sup 2} . A combination of these two measurements gives m{sub t} = 173.1 {+-} 5.2 (stat.) {+-} 5.7 (syst.) GeV/c{sup 2}.
Measurement of the W and Z boson production cross sections in p {anti p} collisions at {radical}s = 1.8 TeV with the D-Zero detector
This thesis reports on the measurement of the W and Z boson inclusive production cross sections ({sigma}{sub W} and {sigma}{sub Z}) times electronic branching ratios (Br(W {yields} e{nu}) and Br(Z {yields} ee)) in p{anti p} collisions at {radical}s = 1.8 TeV. The analysis is based on 12.8 pb{sup -1} of data taken in the 1992-1993 run by the D0 detector at the Fermilab Tevatron collider; the cross sections were measured to be: {sigma}{sub W} {center_dot} Br(W {yields} e{nu}) = 2. 36 {+-} 0.02 {+-} 0.07 {+-} 0.13 nb and {sigma}{sub Z} {center_dot} Br(Z {yields} ee) = 0.218 {+-} 0.008 {+-} 0.008 {+-} 0.012 nb. The first error is statistical, the second error represents the non- luminosity systematic error, and the third error shows the uncertainty in the luminosity determination. Future prospects for similar measurements based on larger samples of data are discussed.
Measurement of the W and Z boson production cross sections in p{anti p} collisions at {radical}s = 1.8 TeV with the D0 detector
This thesis reports on the measurement of the W and Z boson inclusive production cross sections ({sigma}{sub W} and {sigma}{sub Z}) times electronic branching ratios (Br(W {r_arrow} e{nu}) and Br(Z {r_arrow} ee)) in p{anti p} collisions at {radical}s = 1.8 TeV. The analysis is based on 12.8 pb{sup {minus}1} of data taken in the 1992--1993 run by the D0 detector at the Fermilab Tevatron collider; the cross sections were measured to be: {sigma}{sub W} {center_dot} Br(W {r_arrow} e{nu}) = 2.36 {+-} 0.02 {+-} 0.07 {+-} 0.13 nb and {sigma}{sub Z} {center_dot} Br(Z {r_arrow} ee) = 0.218 {+-} 0.008 {+-} 0.008 {+-} 0.012 nb. The first error is statistical, the second error represents the non-luminosity systematic error, and the third error shows the uncertainty in the luminosity determination. Future prospects for similar measurements based on larger samples of data are discussed.
Measurement of Z{sup 0} lepton coupling asymmetries
Polarized Z{sup 0}`s from e{sup +}e{sup {minus}} collisions at the SLAC Linear Collider (SLC) have been used to determine the asymmetry parameters A{sub e}, A{sub {mu}} and A{sub {tau}} from the leptonic decay channels. This is the first direct measurement of A{sub {mu}}. The data have been gathered by the SLC Large Detector (SLD) with the electron polarization averaging 63% during the 1993 data taking period and 77% in 1994-95. A maximum likelihood procedure as well as cross section asymmetries was used to measure the asymmetry parameters from the differential cross sections for equal luminosities of left- and right-handed electron beams. The polarization-dependent muon-pair distributions give A{sub {mu}} = 0.102 {+-}0.034 and the tau-pairs give A{sub {tau}} = 0.195 {+-}0.034. The initial state electronic couplings in all three leptonic channels as well as the final state angular distribution in the e{sup +}e{sup {minus}} final state measure A{sub e} to be A{sub e} = 0.152{+-}0.012. Assuming lepton universality and defining a global leptonic asymmetry parameter A{sub e-{mu}-{tau}} = 0.151{+-}0.011. This global leptonic asymmetry value translates directly into sin{sup 2}{theta}{sub W}{sup eff}=0.2310{+-}0.0014 at the Z{sup 0} pole.
Measurements and analysis of end-to-end Internet dynamics
Accurately characterizing end-to-end Internet dynamics - the performance that a user actually obtains from the lengthy series of network links that comprise a path through the Internet - is exceptionally difficult, due to the network`s immense heterogeneity. At the heart of this work is a `measurement framework` in which a number of sites around the Internet host a specialized measurement service. By coordinating `probes` between pairs of these sites one can measure end-to-end behavior along O(N{sup 2}) paths for a framework consisting of N sites. Consequently, one obtains a superlinear scaling that allows measuring a rich cross-section of Internet behavior without requiring huge numbers of observation points. 37 sites participated in this study, allowing the author to measure more than 1,000 distinct Internet paths. The first part of this work looks at the behavior of end-to-end routing: the series of routers over which a connection`s packets travel. Based on 40,000 measurements made using this framework, the author analyzes: routing `pathologies` such as loops, outages, and flutter; the stability of routes over time; and the symmetry of routing along the two directions of an end-to-end path. The author finds that pathologies increased significantly over the course of 1995 and that Internet paths are heavily dominated by a single route. The second part of this work studies end-to-end Internet packet dynamics. The author analyzes 20,000 TCP transfers of 100 Kbyte each to investigate the performance of both the TCP endpoints and the Internet paths. The measurements used for this part of the study are much richer than those for the first part, but require a great degree of attention to issues of calibration, which are addressed by applying self-consistency checks to the measurements whenever possible. The author finds that packet filters are capable of a wide range of measurement errors, some of …
Measurements of delayed neutron parameters for U-235 and Np-237
Delayed neutrons are emitted by excited nuclei formed in beta decay of fission products called delayed neutron precursors. About 1% of the total neutrons released in fission are delayed neutrons; however, this small fraction plays an important role in nuclear reactor control. The delayed neutrons determine the time-dependent behavior of reactors, and knowledge of parameters used to predict neutron emission rate is essential for establishing reactivity worths. The delayed neutron yields, decay constants, and the absolute yield for the six-group delayed neutrons have been measured for U-235 and Np-237. This experiment has been called for in the forecast of experiments needed to support operations in the US. The bare U-235 metal assembly Godiva IV at the Los Alamos Critical Experiment Facility (LACEF) provided the source of neutrons. Godiva IV generated about 10{sup 7} total fissions in the samples for the infinite and instantaneous irradiation needed to accentuate the shorter and longer-lived groups of delayed neutrons. The detection system used in the experiment consisted of 20 He-3 tubes embedded in a polyethylene cylinder. The delayed neutron activity resulting from the fast neutron-induced fission has been measured. The measured absolute yield for U-235 was determined to be 0.0163 {+-} 0.009 neutrons/fission. This value compares very well with the well-established Keepin absolute yield of 0.0165 {+-} 0.0005. The newly measured absolute yield value for Np-237 was 0.0126 {+-} 0.0007, which compares well to the recently reported value of 0.0129 {+-} 0.0004 by Saleh and Parish. The measured values for U-235 are corroborated with period (e-folding time) versus reactivity calculations.
Metal contacts on ZnSe and GaN
Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.
Microdosimetric investigations at the Fast Neutron Therapy Facility at Fermilab
Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e. oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated. In the unmodified beam, a negligible enhancement for a 50 ppm boron loading was measured. To boost the boron dose enhancement to 3% it was necessary to change the primary proton energy from 66 MeV and to filter the beam by 90 mm of tungsten.
Microstructure-strength relationships of heavily deformed magnesium-lithium composites containing steel fibers
The successful development of deformation-processed metal-metal composites (DMMC) offers the potential for ductile, high-strength structural materials with high-temperature stability. An infiltration casting process was used to permeate steel wool preforms with molten magnesium-lithium (Mg-Li) alloys. The selected matrix alloys were hexagonal close packed (HCP) Mg-4wt%Li or body centered cubic (BCC) Mg-12wt%Li; the low carbon steel wool fibers were predominantly BCC ferrite. These cast HCP/BCC and BCC/BCC composites were deformed by rolling or by extrusion and swaging. Mechanical properties, microstructure, and texture development of the composites were characterized at various levels of deformation. The HCP/BCC composites had limited formability at temperatures up to 400 C while the BCC/BCC composites had excellent formability during sheet rolling at room temperature but limited formability during swaging at room temperature. The tensile strengths of these HCP/BCC and BCC/BCC composite materials increased moderately with deformation, though less than predicted from rule of mixtures (ROM) calculations. The microstructure was characterized to correlate the filament size to the deformation strain and mechanical properties of the composite material. Stereological measurements of the filament size were used to adjust ROM calculations to reflect the actual deformation strain in the fibers. However, the experimental strengths of these composite materials were still less than ROM predictions, possibly due to the presence of considerably large fibers. Of the many models used to describe the strengthening observed in DMMC materials, the Hall-Petch relationship adequately described the experimental data. Texture development was also characterized to explain the deformation characteristics of the composite materials. Chapters 2, 3 and 4 are not included here. They are being processed separately.
Modeling the Dynamic Response of Pressures in a Distributed Helium Refrigeration System
A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.
Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe
This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.
Near-ground cooling efficacies of trees and high-albedo surfaces
Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.
Near-ground cooling efficacies of trees and high-albedo surfaces
No Description Available.
Neutron detector resolution for scattering
A resolution function has been determined for scattered neutron experiments at Rensselaer Polytechnic Institute (RPI). This function accounts for the shifting and broadening of the resonance peak due to the additional path length, traveled by the neutron after scattering and prior to detection, along with the broadening of the resonance peak due to the bounce target. This resolution function has been parameterized both in neutron energy and size of the sample disk. Monte Carlo Neutron and Photon (MCNP) modeling has been used to determine the shape of the detector resolution function while assuming that the sample nucleus has an infinite mass. The shape of the function for a monoenergetic neutron point source has been compared to the analytical solution. Additionally, the parameterized detector resolution function has been used to broaden the scatter yield calculated from Evaluated Neutron Data File ENDF/B-VI cross section data for {sup 238}U. The target resolution function has been empirically determined by comparison of the broadened scatter yield and the experimental yield for {sup 238}U. The combined resolution function can be inserted into the SAMMY code to allow resonance analysis for scattering measurements.
Back to Top of Screen