You limited your search to:

  Partner: UNT Libraries Government Documents Department
0.5 {mu}m E/D AlGaAs/GaAs heterostructure field effect transistor technology with DFET threshold adjust implant
A doped-channel heterostructure field effect transistor (H-FET) technology has been developed with self-aligned refractory gate processing and using both enhancement- and depletion-mode transistors. D-HFET devices are obtained with a threshold voltage adjust implant into material designed for E-HFET operation. Both E- and D-HFETs utilize W/WSi bilayer gates, sidewall spacers, and rapid thermal annealing for controlling short channel effects. The 0.5 {mu}m E- HFETs (D-HFETs) have been demonstrated with transconductance of 425 mS/mm (265-310 mS/mm) and f{sub t} of 45-50 GHz. Ring oscillator gate delays of 19 ps with a power of 0.6 mW have been demonstrated using direct coupled FET logic. These results are comparable to previous doped-channel HFET devices and circuits fabricated by selective reactive ion etching rather than ion implantation for threshold voltage adjustment.
The 0.22 Percent Across-the-Board Cut in FY2001 Appropriations
Report describing changes that affected the government budget for the 2001 fiscal year under the Consolidated Appropriations Act.
The 0.38 Percent Across-the-Board Cut in FY2000 Appropriations
This report outlines cuts made in the federal budget for FY2000. The 0.38% cut was expected to yield savings of $2.4 billion in budget authority and $1.4 billion in outlays for the fiscal year. Departments with cuts in excess of $100 million included the Departments of Defense, Transportation, Health and Human Services, and Education.
1.2 MW klystron for Asymmetric Storage Ring B Factory
A cw klystron operating at 476 MHz has been developed jointly by SLAC and Varian Associates. The unique set of characteristics of this tube were strongly guided by requirements of the fast feedback necessary to prevent oscillations of the storage ring beams caused by the detuned accelerating cavity. This requires a combination of bandwidth and short group delay within the klystron. The RF feedback stabilization scheme also requires amplitude modulation making it necessary to operate the klystron about 10% below saturation. Performance specifications and initial operating results are presented. Site system engineering implementation Fiscal Year 1998 multi-year work plan
Manage the Site Systems Engineering process to provide a traceable, integrated, requirements-driven, and technically defensible baseline., Through the Site Integration Group, Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering`s primary interfaces are with the Project Direction Office and with the projects, as well as with the Planning organization.
1.8.3 Site system engineering FY 1997 program plan
The FY 1997 Multi-Year Work Plan (MYWP) technical baseline describes the functions to be accomplished and the technical standards that govern the work. The following information is provided in this FY 1997 MYWP: technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year.
1-GeV Linac Upgrade Study at Fermilab
A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H{sup -} beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce {approximately}10{sup 14} protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given.
A 1-kW power demonstration from the advanced free electron laser
This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective of this project was to engineer and procure an electron beamline compatible with the operation of a 1-kW free-electron laser (FEL). Another major task is the physics design of the electron beam line from the end of the wiggler to the electron beam dump. This task is especially difficult because electron beam is expected to have 20 kW of average power and to simultaneously have a 25% energy spread. The project goals were accomplished. The high-power electron design was completed. All of the hardware necessary for high-power operation was designed and procured.
1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents
Excitation functions have been measured for complex fragment emission from the compound nucleus {sup 98}Mo, produced by the reaction of {sup 86}Kr with {sup 12}C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are {approximately} 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from {sup 90}Mo and {sup 94}Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs.
A-01 metals in stormwater runoff evaluation
As a part of the A-01 investigation required by the NPDES permit, an investigation was performed to ascertain the concentrations of metals specifically copper (Cu), lead (Pb), and zinc (Zn) in stormwater being discharged through the outfall. This information would indicate whether all water being discharged would have to be treated or if only a portion of the discharged stormwater would have to be treated. A study was designed to accomplish this. The first goal was to determine if the metal concentrations increased, decreased, or remained the same as flow increased during a rain event. The second goal was to determine if the concentrations in the storm water were due to dissolved. The third goal was to obtain background data to ascertain if effluent credits could be gained due to naturally occurring metals.Samples from this study were analyzed and indicate that the copper and lead values increase as the flow increases while the zinc values remain essentially the same regardless of the flow rate. Analyses of samples for total metals, dissolved metals, TSS, and metals in solids was complicated because in all cases metals contamination was found in the filters themselves. Some conclusions can be derived if this problem is taken into account when analyzing the data. Copper concentrations in the total and dissolved fractions as well as the TSS concentrations followed the hydrograph at this outfall but the copper in solids concentration appeared to peak in the first flush and decline to nondetectable rapidly over the course of the storm event. Lead was present in the total analysis but not present in the dissolved fraction or the solids fraction of the samples. The data for zinc was interesting in that the dissolved fractions were higher than the total fraction in three out of four samples. This is probably due to the high zinc concentrations on the filters being transferred to the dissolved faction of the sample. (Abstract Truncated)
1 nA beam position monitoring system
A system has been developed at Jefferson Lab for measuring transverse position of very low current beams delivered to the Experimental Hall B of the Continuous Electron Beam Accelerator Facility (CEBAF). At the heart of the system is a position sensitive cavity operating at 1497 MHz. The cavity utilizes a unique design which achieves a high sensitivity to beam position at a relatively low cavity Q. The cavity output RF signal is processed using a down-converter and a commercial lock-in amplifier operating at 100 kHz. The system interfaces with a VME based EPICS control system using the IEEE, 488 bus. The main features of the system are simple and robust design, and wide dynamic range capable of handling beam currents from 1 nA to 1000 nA with an expected resolution better than 100 {mu}m. This paper outlines the design of the system.
A 1- to 5-MW, RCS-based, short-pulse spallation neutron source
Two accelerator configurations, the linac/compressor ring scheme and the linac/RCS scheme, are commonly used to provide the proton beam power for a short-pulse spallation neutron source. In one configuration, a full-power linac provides the beam power and a compressor ring shortens the pulse length from 1-ms down to 1 {micro}s. In the other, rapid cycling synchrotrons (RCSs) provide the beam power and also shorten the pulse length. A feasibility study of a staged approach to a 5-MW proton source utilizing RCS technology, allowing intermediate operation at 1 MW, was performed at ANL and is presented in this paper. This study is complementary to a study in progress at ORNL based on a linac and an accumulator ring. The 1-MW facility consists of a 400-MeV injector linac that delivers 0.5-mA time-averaged current, a synchrotron that accelerates the beam to 2 GeV at a 30-Hz rate, and two neutron-generating target stations. In the second phase, the 2-GeV beam is accelerated to 10 GeV by a larger RCS, increasing the facility beam power to 5 MW.
1-watt composite-slab Er:YAG laser. Revision 1
A diode-side-pumped discrete-optic Er{sup 3+} :YAG laser employs pump-light coupling through a sapphire plate diffusion-bonded to the laser slab, removing heat directly at the pump face of the slab instead of requiring conduction through to its far side. This lowers the temperature in the gain region and gives reduced thermal lensing, which produces exceptional beam quality (M{sup 2} {approx} 1.3) at output powers {approx} 0.3 Watt. Powers above 1 Watt have been demonstrated with peak slope efficiencies {approx}20%. The novel architecture is also applicable to other side-pumped lasers.
2-1/2-D electromagnetic modeling of nodular defects in high-power multilayer optical coatings
Advances in the design and production of high damage threshold optical coatings for use in mirrors and polarizers have been driven by the design requirements of high-power laser systems such as the proposed 1.8-MJ National Ignition Facility (NIF) and the prototype 12- kJ Beamlet laser system. The present design of the NIF will include 192 polarizers and more than 1100 mirrors. Currently, the material system of choice for high-power multilayer optical coatings with high damage threshold applications near 1.06 {mu}m are e-beam deposited HfO{sub 2}/Si0{sub 2} coatings. However, the optical performance and laser damage thresholds of these coatings are limited by micron-scale defects and insufficient control over layer thickness. In this report, we will discuss the results of our 2-1/2-D finite-element time- domain (FDTD) EM modeling effort for rotationally-symmetric nodular defects in multilayer dielectric HR coatings. We have added a new diagnostic to the 2-1/2-D FDTD EM code, AMOS, that enables us to calculate the peak steady-state electric fields throughout a 2-D planar region containing a 2-D r-z cross-section of the axisymmetric nodular defect and surrounding multilayer dielectric stack. We have also generated a series of design curves to identify the range of loss tangents for Si0{sub 2} and HfO{sub 2} consistent with the experimentally determined power loss of the HR coatings. In addition, we have developed several methods to provide coupling between the EM results and the thermal-mechanical simulation effort.
(02.2) Scoping experiments; (02.3) long-term corrosion testing and properties evaluation of candidate waste package basket material
The work described in this activity plan addresses Information Need 2.7.3 of the Yucca Mountain Site Characterization Plan (l), which reads Determination that the design criteria in lOCFR60.130 through 60.133 and any appropriate additional design objectives pertaining to criticality control have been met. This work falls under section WBS 2 (Basket Materials) of WBS (Waste Package Materials) in the Work Breakdown Structure of the Yucca Mountain Site Characterization Project.
The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid
Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.
A 2.14 ms candidate optical pulsar in SN1987A: Ten years after
We have monitored Supernova 1987A in optical/near-infrared bands from a few weeks following its birth until the present time in order to search for a pulsar remnant. We have found an apparent pattern of emission near the frequency of 467.5 Hz - a 2.14 ms pulsar candidate, first detected in data taken on the remnant at the Las Campanas Observatory (LCO) 2.5-m Dupont telescope during 14-16 Feb. 1992 UT. We detected further signals near the 2.14 ms period on numerous occasions over the next four years in data taken with a variety of telescopes, data systems and detectors, at a number of ground- and space-based observatories. The sequence of detections of this signal from Feb. `92 through August `93, prior to its apparent subsequent fading, is highly improbable (< 10{sup -10} for any noise source). We also find evidence for modulation of the 2.14 ms period with a {approx}1,000 s period which, when taken with the high spindown of the source (2-3 x 10{sup -10} Hz/s), is consistent with precession and spindown via gravitational radiation of a neutron star with a non- axisymmetric oblateness of {approx}10{sup -6}, and an implied gravitational luminosity exceeding that of the Crab Nebula pulsar by an order of magnitude.
2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks
A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the core toroidal rotation is co-moving with the inductive plasma current and when the ion {triangledown}B-drift is towards the single-null X-point.
2-D Finite Element Cable and Box IEMP Analysis
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
2-D image segmentation using minimum spanning trees
This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.
2-D linear motion system. Innovative technology summary report
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However, for areas over approximately 600 m{sup 2}, the Wall Walker would cost less than the baseline. Using the Wall Walker 2-D LMS, ALARA exposure and worker safety is improved, and there is potential for increased productivity. This innovative technology performed better than the baseline by providing real-time monitoring of the tool or instrument position. Also, the Wall Walker 2-D LMS can traverse any two-dimensional path at constant speeds of up to 18.3 linear meters per minute (60 linear feet per minute). The survey production rate for the innovative technology was about 0.6 m{sup 2}/min (6 ft{sup 2}/min); the baseline production rate was approximately 0.3 m{sup 2}/min (3 ft{sup 2}/min), using the same surveying instrument and maximum scanning rate.
2 Letters from concerned citizens in response to the recommendation regarding the Defense Office of Hearings and Appeals in Fort Meade
Community Correspondence - 2 Letters from concerned citizens in response to the recommendation regarding the Defense Office of Hearings and Appeals in Fort Meade
2 Questions pertaining to DON-0133 and the non-BRAC Scenario (Portsmouth Naval Shipyard)
2 Questions pertaining to DON-0133 and the non-BRAC Senario (Portsmouth Naval Shipyard. Department of Defense Clearinghouse Response: DoD Clearinghouse reply to a letter from the BRAC Commission regarding 2 Questions pertaining to DON-0133 and the non-BRAC scenario (Portsmouth Naval Shipyard)
N = 2 string amplitudes
In physics, solvable models have played very important roles. Understanding a simple model in detail teaches us a lot about more complicated models in generic situations. Five years ago, C. Vafa and I found that the closed N = 2 string theory, that is a string theory with the N = 2 local supersymmetry on the worldsheet, is classically equivalent to the self-dual Einstein gravity in four spacetime dimensions. Thus this string theory is solvable at the classical level. More recently, we have examined the N = 2 string partition function for spacial compactifications, and computed it to all order in the string perturbation expansion. The fact that such computation is possible at all suggests that the N = 2 string theory is solvable even quantum mechanically.
A 2 to 4 nm high power FEL on the SLAC linac
We report the results of preliminary studies of a 2 to 4 nm SASE FEL, using a photoinjector to produce the electron beam, and the SLAC linac to accelerate it to an energy up to 10 GeV. Longitudinal bunch compression is used to increases ten fold the peak current to 2.5 kA, while reducing the bunch length to the subpicosecond range. The saturated output power is in the multi-gigawatt range, producing about 10{sup 14} coherent photons within a bandwidth of about 0.2% rms, in a pulse of several millijoules. At 120Hz repetition rate the average power is about 1 W. The system is optimized for x-ray microscopy in the water window around 2 to 4 nm, and will permit imaging a biological sample in a single subpicosecond pulse.
2 x 2 TeV mu(superscript +) mu (superscript) collider
The scenarios for high-luminosity 2 x 2 TeV and 250 x 250 GeV {mu}{sup +}{mu}{sup -} colliders are presented. Having a high physics potential, such a machine has specific physics and technical advantages and disadvantages when compared with an e{sup +}e{sup -} collider. Parameters for the candidate designs and the basic components - proton source, pion production and decay channel, cooling, acceleration and collider storage ring - are considered. Attention is paid to the areas mostly affecting the collider performance: targetry, energy spread, superconducting magnet survival, detector backgrounds, polarization, environmental issues. 13 refs., 9 figs., 4 tabs.
A 3-axis force balanced accelerometer using a single proof-mass
This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.
3-D computer simulations of EM fields in the APS vacuum chamber: Part 1, Frequency-domain analysis
The vacuum chamber proposed for the storage ring of the 7-GeV Advanced Photon Source (APS) basically consists of two parts: the beam chamber and the antechamber, connected to each other by a narrow gap. A sector of 1-meter-long chamber with dosed end plates, to which are attached the 1-inch-diameter beampipes centered at the beam chamber, has been built for experimental purposes. The 3-D code MAFIA has been used to simulate the frequency-domain behaviors of EM fields in this setup. The results are summarized in this note and are compared with that previously obtained from 2-D simulations and that from network analyzer measurements. They are in general agreement. A parallel analysis in the time-domain is reported in a separate note. The method of our simulations can be briefly described as follows. The 1-inch diameter beampipes are terminated by conducting walls at a length of 2 cm. The whole geometry can thus be considered as a cavity. The lowest RF modes of this geometry are computed using MAFIA. The eigenfrequencies of these modes are a direct output of the eigenvalue solver E3, whereas the type of each mode is determined by employing the postprocessor P3. The mesh sizes are chosen such that they are small enough for computations in the frequency region in which we are interested (the sampling theorem), while the total number of mesh points is still well within the range that our computer system can cope with.
3-D electromagnetic modeling of wakefields in accelerator components
We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.
3-D Finite Element Analyses of the Egan Cavern Field
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
3-d finite element model development for biomechanics: a software demonstration
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.
A 3-d modular gripper design tool
Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.
A 3-d modular gripper design tool
Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.
A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry
A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.
3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. 1998 annual progress report
'The overall objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. Three specific objectives towards this end are: (1) understanding IP at the laboratory level through measurements of complex resistivity as a function of frequency in rock and soil samples with varying pore geometries, pore fluid conductivities and saturations, and contaminant chemistries and concentrations; (2) developing effective data acquisition techniques for measuring the critical IP responses (time domain or frequency domain) in the field; (3) developing modeling and inversion algorithms that permit the interpretation of field IP data in terms of subsurface geology and contaminant plume properties. The authors laboratory experiments to date are described in Appendices A and B, which consist of two papers submitted to the annual SAGEEP conference (Frye et al., 1998; Sturrock et al., 1998). The experiments involved measurements of complex resistivity vs. frequency on a suite of brine saturated sandstone samples. In one set of experiments, the fluid chemistry (pH, ionic strength, and cation type) was varied. In a second set of experiments, the microgeometry of the rock matrix was varied. The experiments showed that spectral IP responses are sensitive to subtle variations in both the solution chemistry and rock microgeometry. The results demonstrate that spectral IP responses have the potential of being sensitive indicators of in-situ chemistry and microgeometry, the latter of which may be related to the hydraulic properties. Data Acquisition The authors have been looking in some detail at the effects of electromagnetic coupling and how to practically deal with it. In this area, the results to date are summarized in Vandiver (1998). The progress in the development of modeling and inversion algorithms for IP is described in Appendix C, a paper submitted to the annual SAGEEP conference (Shi et al., 1998). The authors have developed algorithms for forward modeling and inversion of spectral IP data in 3-D media. The algorithms accommodate a general earth model with a complex electrical conductivity as a function of frequency and 3-D spatial position. Using regularization and optimization techniques, the inversion algorithm obtains a 3-D image of resistivity amplitude and phase for each frequency contained in the data set. They have begun testing their algorithms on synthetic data generated from a simple model of a contaminant plume. The complex resistivity parameters of the background medium and plume are based on the laboratory results described above.'
3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. Annual progress report, September 15, 1996--September 14, 1997
'The objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. The first-year accomplishments are (1) laboratory experiments on fluid-saturated sandstones quantifying the dependence of spectral IP responses on solution chemistry and rock micro-geometry; (2) library research on the current understanding of electromagnetic coupling effects on IP data acquired in the field: and (3) development of prototype forward modeling and inversion algorithms for interpreting IP data in terms of 3-D models of complex resistivity.'
3-D Target Location from Stereoscopic SAR Images
SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.
3-D vertical seismic profiling at LLNL Site 300
The initial goal of the 3-D Vertical Seismic Profiling (VSP) work at LLNL was to characterize seismic wave velocities and frequencies below the vadose zone to design the acquisition geometry for a 3-D shallow surface seismic reflection survey. VSPs are also used routinely to provide a link between surface seismic data and well logs. However, a test 2-D seismic line recorded at LLNL in the Spring of 1994 indicated that obtaining high quality reflection images below the vadose zone, yet shallower that 50 m, would require an expensive, very finely sampled survey ({lt} 1 m receiver spacing). Extensive image processing of the LLNL 2-D test line indicated that the only reliable reflection was from the top of the water table. Surprisingly, these results were very different than recent 3-D seismic work recorded at other sites, where high quality, high frequency surface (up to 300 Hz) reflection images were obtained as shallow as 20m. We believe that the differences are primarily due to the comparatively deep vadose zone at LLNL (15 to 30m) as compared to 0-5m at other sites. The thick vadose zone attenuates the reflection signals, particularly at the high frequencies (above 100 @). In addition, the vadose zone at LLNL creates a seismogram in which surface-propagating noise overlaps with the reflection signals for reflections above 50 m. By contrast, when the vadose zone is not thick, high frequencies can propagate and noise will not overlap with reflections as severely. Based on the results from the 2-D seismic line and the encouraging results from a VSP run concurrent with the 2-D seismic experiment, we modified the objectives of the research and expanded the scope of the VSP imaging at LLNL. We conducted two 3-D multi-offset VSP experiments at LLNL in the Summer and Fall of 1994. These VSP experiments were designed to characterize the seismic propagation characteristics at two different locations on the LLNL site: the first was a well with a relatively shallow water table (10m), while the second was a well with a relatively deep water table (about 25m). Other goals of the VSP experiments were to characterize the velocity structure in the vicinity of boreholes, and to attempt to image reflections away from the boreholes. We found that the usable frequency content appeared to vary with water table level.
3-D woven, mullite matrix, composite filter
Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1996 pilot scale demonstration in one of the two hot gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and II) objective is to develop and demonstrate the suitability of the Westinghouse/Techniweave next generation composite candle filter for use in Pressurized Fluidized Bed Combustion (PFBC) and/or Integrated Gasification Combined Cycle (IGCC) power generation systems. The Optional Task (Phase M, Task 5) objective is to fabricate, inspect and ship to Wilsonville Hot gas particulate filters are key components for the successful commercializaion of advanced coal-based power-generation systems such as Pressurized Fluidized-bed Combustion (PFBC), including second-generation PFBC, and Integrated Gasification Combined Cycles (IGCC). Current generation monolithic ceramic filters are subject to catastrophic failure because they have very low resistance to crack propagation. To overcome this problem, a damage-tolerant ceramic filter element is needed.
A 3-dimensional ray-trace model for predicting the performance of flashlamp-pumped laser amplifiers
We have developed a fully three-dimensional model for the performance of flashlamp pumped laser amplifiers. The model uses a reverse ray-trace technique to calculate the pumping of the laser glass by the flashlamp radiation. We have discovered several different methods by which we can speed up the calculation of the gain profile in a amplifier. The model predicts the energy-storage performance of the Beamlet amplifiers to better than 5%. This model will be used in the optimization of the National Ignition Facility (NIF) amplifier design.
3-dimensional wells and tunnels for finite element grids
Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.
3(omega) damage threshold evaluation of final optics components using Beamlet mule and off-line testing
A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.
3 Questions pertaining to DARPA, Leased Space, and DISA
Department of Defense Clearinghouse Response: DoD Clearinghouse reply to a letter from the BRAC Commission regarding 3 Questions pertaining to DARPA, Leased Space, and DISA.
4.5 Meter high level waste canister study
The Tank Waste Remediation System (TWRS) Storage and Disposal Project has established the Immobilized High-Level Waste (IBLW) Storage Sub-Project to provide the capability to store Phase I and II BLW products generated by private vendors. A design/construction project, Project W-464, was established under the Sub-Project to provide the Phase I capability. Project W-464 will retrofit the Hanford Site Canister Storage Building (CSB) to accommodate the Phase I I-ILW products. Project W-464 conceptual design is currently being performed to interim store 3.0 m-long BLW stainless steel canisters with a 0.61 in diameter, DOE is considering using a 4.5 in canister of the same diameter to reduce permanent disposal costs. This study was performed to assess the impact of replacing the 3.0 in canister with the 4.5 in canister. The summary cost and schedule impacts are described.
04/28/05 Cobra Data: JSF Recommendation
103-06A-NMC19 - DoD Input - Navy/MC - Naval Air Station Pensacola - Florida - BRAC Commission - FY 2005.
04/28/2005 COBRA Report: JSF Initial Test Site
DoD Input - 103-06 - General - Joint Strike Fighter Data - Cobra Report - BRAC Commission - FY 2005.
4-inch sample recovery canisters, Test Model D series. Final report, September 1969--May 1970
Six tests were conducted on 4-Inch Test Model D Closures to develop an improved closure for the redesigned Sandia Recovery Canister (SRC). The first three closures tested used variations of the high explosive (HE) design used on the previous Model B (Second) Series (P64283). The last three units tested used variations of the HE design used in the Midi Mist Event SRC.
4. International reservoir characterization technical conference
This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.
4 MW upgrade to DIII-D FWCD system: System commissioning and initial operation
The initial installation of the 4 MW fast wave current drive (FWCD) upgrade started in 1992 with the purchase of two ABB/Thomcast AG rf power amplifiers. These amplifiers cover the frequency range 30 MHz to 120 MHz. A maximum output power of over 2 MW between 30 MHz and 80 MHz and 1 MW at 120 MHz were the specification requirements. The system as installed is comprised of the two mentioned rf amplifiers, coaxial transmission and matching components, rf phase and amplitude monitoring, and a SUN SparcStation 10 control system. Due to various reasons almost every major component in the system required redesign and engineering in order to meet the system requirements. The failures, probable cause and the final redesigns will be discussed as well as some thoughts on how better to specify system requirements for future systems.
5. annual clean coal technology conference: powering the next millennium. Volume 2
The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.