You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science
A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics

A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics

Date: May 2012
Creator: Indrakanti, Saratchandra
Description: Epidemics have caused major human and monetary losses through the course of human civilization. It is very important that epidemiologists and public health personnel are prepared to handle an impending infectious disease outbreak. the ever-changing demographics, evolving infrastructural resources of geographic regions, emerging and re-emerging diseases, compel the use of simulation to predict disease dynamics. By the means of simulation, public health personnel and epidemiologists can predict the disease dynamics, population groups at risk and their geographic locations beforehand, so that they are prepared to respond in case of an epidemic outbreak. As a consequence of the large numbers of individuals and inter-personal interactions involved in simulating infectious disease spread in a region such as a county, sizeable amounts of data may be produced that have to be analyzed. Methods to visualize this data would be effective in facilitating people from diverse disciplines understand and analyze the simulation. This thesis proposes a framework to simulate and visualize the spread of an infectious disease in a population of a region such as a county. As real-world populations have a non-homogeneous demographic and spatial distribution, this framework models the spread of an infectious disease based on population of and geographic distance between ...
Contributing Partner: UNT Libraries
GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction

GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction

Date: May 2012
Creator: Griffin, Terry W.
Description: In the United States, smartphone ownership surpassed 69.5 million in February 2011 with a large portion of those users (20%) downloading applications (apps) that enhance the usability of a device by adding additional functionality. a large percentage of apps are written specifically to utilize the geographical position of a mobile device. One of the prime factors in developing location prediction models is the use of historical data to train such a model. with larger sets of training data, prediction algorithms become more accurate; however, the use of historical data can quickly become a downfall if the GPS stream is not collected or processed correctly. Inaccurate or incomplete or even improperly interpreted historical data can lead to the inability to develop accurately performing prediction algorithms. As GPS chipsets become the standard in the ever increasing number of mobile devices, the opportunity for the collection of GPS data increases remarkably. the goal of this study is to build a comprehensive system that addresses the following challenges: (1) collection of GPS data streams in a manner such that the data is highly usable and has a reduction in errors; (2) processing and reduction of the collected data in order to prepare it and ...
Contributing Partner: UNT Libraries
Graph-based Centrality Algorithms for Unsupervised Word Sense Disambiguation

Graph-based Centrality Algorithms for Unsupervised Word Sense Disambiguation

Date: December 2008
Creator: Sinha, Ravi Som
Description: This thesis introduces an innovative methodology of combining some traditional dictionary based approaches to word sense disambiguation (semantic similarity measures and overlap of word glosses, both based on WordNet) with some graph-based centrality methods, namely the degree of the vertices, Pagerank, closeness, and betweenness. The approach is completely unsupervised, and is based on creating graphs for the words to be disambiguated. We experiment with several possible combinations of the semantic similarity measures as the first stage in our experiments. The next stage attempts to score individual vertices in the graphs previously created based on several graph connectivity measures. During the final stage, several voting schemes are applied on the results obtained from the different centrality algorithms. The most important contributions of this work are not only that it is a novel approach and it works well, but also that it has great potential in overcoming the new-knowledge-acquisition bottleneck which has apparently brought research in supervised WSD as an explicit application to a plateau. The type of research reported in this thesis, which does not require manually annotated data, holds promise of a lot of new and interesting things, and our work is one of the first steps, despite being a ...
Contributing Partner: UNT Libraries
Graph-Based Keyphrase Extraction Using Wikipedia

Graph-Based Keyphrase Extraction Using Wikipedia

Date: December 2010
Creator: Dandala, Bharath
Description: Keyphrases describe a document in a coherent and simple way, giving the prospective reader a way to quickly determine whether the document satisfies their information needs. The pervasion of huge amount of information on Web, with only a small amount of documents have keyphrases extracted, there is a definite need to discover automatic keyphrase extraction systems. Typically, a document written by human develops around one or more general concepts or sub-concepts. These concepts or sub-concepts should be structured and semantically related with each other, so that they can form the meaningful representation of a document. Considering the fact, the phrases or concepts in a document are related to each other, a new approach for keyphrase extraction is introduced that exploits the semantic relations in the document. For measuring the semantic relations between concepts or sub-concepts in the document, I present a comprehensive study aimed at using collaboratively constructed semantic resources like Wikipedia and its link structure. In particular, I introduce a graph-based keyphrase extraction system that exploits the semantic relations in the document and features such as term frequency. I evaluated the proposed system using novel measures and the results obtained compare favorably with previously published results on established benchmarks.
Contributing Partner: UNT Libraries
Grid-based Coordinated Routing in Wireless Sensor Networks

Grid-based Coordinated Routing in Wireless Sensor Networks

Date: December 2006
Creator: Sawant, Uttara
Description: Wireless sensor networks are battery-powered ad-hoc networks in which sensor nodes that are scattered over a region connect to each other and form multi-hop networks. These nodes are equipped with sensors such as temperature sensors, pressure sensors, and light sensors and can be queried to get the corresponding values for analysis. However, since they are battery operated, care has to be taken so that these nodes use energy efficiently. One of the areas in sensor networks where an energy analysis can be done is routing. This work explores grid-based coordinated routing in wireless sensor networks and compares the energy available in the network over time for different grid sizes.
Contributing Partner: UNT Libraries
Group-EDF: A New Approach and an Efficient Non-Preemptive Algorithm for Soft Real-Time Systems

Group-EDF: A New Approach and an Efficient Non-Preemptive Algorithm for Soft Real-Time Systems

Date: August 2006
Creator: Li, Wenming
Description: Hard real-time systems in robotics, space and military missions, and control devices are specified with stringent and critical time constraints. On the other hand, soft real-time applications arising from multimedia, telecommunications, Internet web services, and games are specified with more lenient constraints. Real-time systems can also be distinguished in terms of their implementation into preemptive and non-preemptive systems. In preemptive systems, tasks are often preempted by higher priority tasks. Non-preemptive systems are gaining interest for implementing soft-real applications on multithreaded platforms. In this dissertation, I propose a new algorithm that uses a two-level scheduling strategy for scheduling non-preemptive soft real-time tasks. Our goal is to improve the success ratios of the well-known earliest deadline first (EDF) approach when the load on the system is very high and to improve the overall performance in both underloaded and overloaded conditions. Our approach, known as group-EDF (gEDF), is based on dynamic grouping of tasks with deadlines that are very close to each other, and using a shortest job first (SJF) technique to schedule tasks within the group. I believe that grouping tasks dynamically with similar deadlines and utilizing secondary criteria, such as minimizing the total execution time can lead to new and more ...
Contributing Partner: UNT Libraries
High Performance Architecture using Speculative Threads and Dynamic Memory Management Hardware

High Performance Architecture using Speculative Threads and Dynamic Memory Management Hardware

Date: December 2007
Creator: Li, Wentong
Description: With the advances in very large scale integration (VLSI) technology, hundreds of billions of transistors can be packed into a single chip. With the increased hardware budget, how to take advantage of available hardware resources becomes an important research area. Some researchers have shifted from control flow Von-Neumann architecture back to dataflow architecture again in order to explore scalable architectures leading to multi-core systems with several hundreds of processing elements. In this dissertation, I address how the performance of modern processing systems can be improved, while attempting to reduce hardware complexity and energy consumptions. My research described here tackles both central processing unit (CPU) performance and memory subsystem performance. More specifically I will describe my research related to the design of an innovative decoupled multithreaded architecture that can be used in multi-core processor implementations. I also address how memory management functions can be off-loaded from processing pipelines to further improve system performance and eliminate cache pollution caused by runtime management functions.
Contributing Partner: UNT Libraries
Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem

Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem

Date: August 2001
Creator: Chapin, Brenton
Description: Burrows-Wheeler compression is a three stage process in which the data is transformed with the Burrows-Wheeler Transform, then transformed with Move-To-Front, and finally encoded with an entropy coder. Move-To-Front, Transpose, and Frequency Count are some of the many algorithms used on the List Update problem. In 1985, Competitive Analysis first showed the superiority of Move-To-Front over Transpose and Frequency Count for the List Update problem with arbitrary data. Earlier studies due to Bitner assumed independent identically distributed data, and showed that while Move-To-Front adapts to a distribution faster, incurring less overwork, the asymptotic costs of Frequency Count and Transpose are less. The improvements to Burrows-Wheeler compression this work covers are increases in the amount, not speed, of compression. Best x of 2x-1 is a new family of algorithms created to improve on Move-To-Front's processing of the output of the Burrows-Wheeler Transform which is like piecewise independent identically distributed data. Other algorithms for both the middle stage of Burrows-Wheeler compression and the List Update problem for which overwork, asymptotic cost, and competitive ratios are also analyzed are several variations of Move One From Front and part of the randomized algorithm Timestamp. The Best x of 2x - 1 family includes Move-To-Front, ...
Contributing Partner: UNT Libraries
Hopfield Networks as an Error Correcting Technique for Speech Recognition

Hopfield Networks as an Error Correcting Technique for Speech Recognition

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Bireddy, Chakradhar
Description: I experimented with Hopfield networks in the context of a voice-based, query-answering system. Hopfield networks are used to store and retrieve patterns. I used this technique to store queries represented as natural language sentences and I evaluated the accuracy of the technique for error correction in a spoken question-answering dialog between a computer and a user. I show that the use of an auto-associative Hopfield network helps make the speech recognition system more fault tolerant. I also looked at the available encoding schemes to convert a natural language sentence into a pattern of zeroes and ones that can be stored in the Hopfield network reliably, and I suggest scalable data representations which allow storing a large number of queries.
Contributing Partner: UNT Libraries
Impact of actual interference on capacity and call admission control in a CDMA network.

Impact of actual interference on capacity and call admission control in a CDMA network.

Date: May 2004
Creator: Parvez, Asad
Description: An overwhelming number of models in the literature use average inter-cell interference for the calculation of capacity of a Code Division Multiple Access (CDMA) network. The advantage gained in terms of simplicity by using such models comes at the cost of rendering the exact location of a user within a cell irrelevant. We calculate the actual per-user interference and analyze the effect of user-distribution within a cell on the capacity of a CDMA network. We show that even though the capacity obtained using average interference is a good approximation to the capacity calculated using actual interference for a uniform user distribution, the deviation can be tremendously large for non-uniform user distributions. Call admission control (CAC) algorithms are responsible for efficient management of a network's resources while guaranteeing the quality of service and grade of service, i.e., accepting the maximum number of calls without affecting the quality of service of calls already present in the network. We design and implement global and local CAC algorithms, and through simulations compare their network throughput and blocking probabilities for varying mobility scenarios. We show that even though our global CAC is better at resource management, the lack of substantial gain in network throughput and ...
Contributing Partner: UNT Libraries