Search Results

open access

Computational and Experimental Studies of the Photoluminescence, Reactivity and Structural Properties of d10 and d8 Metal Complexes

Description: Computational chemistry has gained interest as a characterization tool to predict photoluminescence, reactivity and structural properties of organic and transition metal complexes. With the rise of methods including relativity, these studies have been expanded to the accurate modeling of luminescence spectra of complexes with considerable spin-orbit splitting due to heavy metal centers as well as the reaction pathways for these complexes to produce natural products such as hydrogen gas. These a… more
Date: May 2019
Creator: Otten, Brooke Michelle

Computational Development of Trimetallic Cyclotrimers for Gas-Filtration Applications through Non-Covalent Interactions

Description: Photophysical properties of an array of various polyaromatic hydrocarbons were benchmarked with B3LYP, M06 and B97D methods coupled with Pople and CEP-31G(d) basis sets. Results from the benchmark show the importance of diffuse basis sets when modeling the electronic properties of highly conjugated systems and provide qualitative reliable accuracy with certain levels of theory. B97D and M06 are applied to modeling pyrene adducts governed by non-covalent interactions in both gaseous and condense… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: December 2019
Creator: Williams, Christopher M.
open access

Computational Investigation of DNA Repair Enzymes: Determination and Characterization of Cancer Biomarkers and Structural Features

Description: Genomic integrity is important for living cells' correct functioning and propagation. Deoxyribonucleic acid as a molecule is a subject to chemical reactions with agents that can come from environment as well as from internal metabolism processes. These reactions can induce damage to DNA and thus compromise the genetic information, and result in disease and death of an organism. To mitigate the damage to DNA, cells have evolved to have multiple DNA repair pathways. Presented here is a computat… more
Date: May 2018
Creator: Silvestrov, Pavel
open access

Computational Investigation of Molecular Optoelectronic and Biological Systems

Description: The scope of work in this dissertation has comprised several major investigations on applications and theoretical studies of ab initio quantum mechanics and density functional theory where those techniques were applied to the following: (i) investigation of the performance of density functionals for the computations of molecular properties of 3d transition metal containing systems; (ii) guidance for experimental groups for rational design of macrometallocyclic multinuclear complexes with superi… more
Date: August 2011
Creator: Tekarli, Sammer M.

Computational Investigations of Catalytic Activity by Metal-Containing Complexes

Description: This dissertation delves into the catalytic activity of multiple metal-containing complexes with an emphasis on the activation of C–H bonds in small molecules and olefin oligomerization. The research contained in these works employs computational methodologies to better understand the thermodynamics and kinetics of the reactions. Computations can be used to quickly identify novel models and find ideal substitutions for improved catalyst design. Within this dissertation, multiple molecules of di… more
Date: August 2022
Creator: Carter, Carly Catherine

Computational Modeling of Cancer-Related Mutations in DNA Repair Enzymes Using Molecular Dynamics and Quantum Mechanics/Molecular Mechanics

Description: This dissertation details the use of computational methods to understand the effect that cancer-related mutations have on proteins that complex with nucleic acids. Firstly, we perform molecular dynamics (MD) simulations of various mutations in DNA polymerase κ (pol κ). Through an experimental collaboration, we classify the mutations as more or less active than the wild type complex, depending upon the incoming nucleotide triphosphate. From these classifications we use quantum mechanics/molecula… more
Date: May 2022
Creator: Leddin, Emmett Michael
open access

Computational Modeling of Small Molecules

Description: Computational chemistry lies at the intersection of chemistry, physics, mathematics, and computer science, and can be used to explain the behavior of atoms and molecules, as well as to augment experiment. In this work, computational chemistry methods are used to predict structural and energetic properties of small molecules, i.e. molecules with less than 60 atoms. Different aspects of computational chemistry are examined in this work. The importance of examining the converged orbitals obtained … more
Date: December 2015
Creator: Weber, Rebecca J.
open access

Computational Simulations of Cancer and Disease-Related Enzymatic Systems Using Molecular Dynamics and Combined Quantum Methods

Description: This work discusses applications of computational simulations to enzymatic systems with a particular focus on the effects of various small perturbations on cancer and disease-related systems. First, we cover the development of carbohydrate-based PET imaging ligands for Galectin-3, which is a protein overexpressed in pancreatic cancer tumors. We uncover several structural features for the ligands that can be used to improve their binding and efficacy. Second, we discuss the AlkB family of enzym… more
Date: May 2018
Creator: Walker, Alice Rachel

Computational Studies of C-H Bond Activation and Ethylene Polymerization Using Transition Metal Complexes

Description: This work discusses the C-H bond activation by transition metal complexes using various computational methods. First, we performed a DFT study of oxidative addition of methane to Ta(OC2H4)3A (where A may act as an ancillary ligand) to understand how A may affect the propensity of the complex to undergo oxidative addition. Among the A groups studied, they can be a Lewis acid (B or Al), a saturated, electron-precise moiety (CH or SiH), a σ-donor (N), or a σ-donor/π-acid (P). By varying A, we seek… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Parveen, Riffat

Computational Studies of Catalysis Mediated by Transition Metal Complexes

Description: Computational methods were employed to investigate catalytic processes. First, DFT calculations predicted the important geometry metrics of a copper–nitrene complex. MCSCF calculations supported the open-shell singlet state as the ground state of a monomeric copper nitrene, which was consistent with the diamagnetic character deduced from experimental observations. The calculations predicted an elusive terminal copper nitrene intermediate. Second, DFT methods were carried out to investigate the … more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Jiang, Quan
open access

Computational Studies of C–H/C–C Manipulation Utilizing Transition Metal Complexes

Description: Density Functional Theory (DFT) is an effective tool for studying diverse metal systems. Presented herein are studies of a variety of metal systems, which can be applied to accomplish transformations that are currently difficult/impossible to achieve. The specific topics studied utilizing DFT include: 1) C–H bond activation via an Earth-abundant transition metal complex, 2) C–H bond deprotonation via an alkali metal superbase, 3) and amination/aziridination reactions utilizing a CuI reagent. Us… more
Date: May 2015
Creator: Pardue, Daniel B.
open access

Computational Studies of Coordinatively Unsaturated Transition Metal Complexes

Description: In this research the validity of various computational techniques has been determined and applied the appropriate techniques to investigate and propose a good catalytic system for C-H bond activation and functionalization. Methane being least reactive and major component of natural gas, its activation and conversion to functionalized products is of great scientific and economic interest in pure and applied chemistry. Thus C-H activation followed by C-C/C-X functionalization became crux of the s… more
Date: December 2006
Creator: Vaddadi, Sridhar
open access

Computational Studies of Inorganic Systems with a Multiscale Modeling Approach: From Atomistic to Continuum Scale

Description: Multiscale modeling is an effective tool for integrating different computational methods, creating a way of modeling diverse chemical and physical phenomena. Presented are studies on a variety of chemical problems at different computational scales and also the combination of different computational methods to study a single phenomenon. The methods used encompass density functional theory (DFT), molecular dynamics (MD) simulations and finite element analysis (FEA). The DFT studies were conducted… more
Date: August 2013
Creator: Olatunji-Ojo, Olayinka A.
open access

Computational Studies of the Photophysical, Structural, and Catalytic Properties of Complex Chemical Systems

Description: Computational chemistry employs mathematical algorithms, statistics, and large databases to integrate chemical theory with experimental observations. Computational modeling allows us to make predictions concerning molecular properties and reactivity that ultimately lead to accurate assessment of the most important fundamental properties of chemical systems. Advances in theoretical techniques and computer power have dramatically increased the usefulness and importance of computational chemistry … more
Date: May 2021
Creator: Melancon, Kortney
open access

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

Description: A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes base… more
Date: May 2007
Creator: Yu, Liwen
open access

Computational Study of C−H/C−C Activation and Functionalization with Nitrene, Carbene and Related Complexes

Description: This dissertation involves inorganic/organometallic catalysis models, in particular the functionalization of carbon-hydrogen and carbon-carbon bonds. Computational methods have been utilized to better understand the factors affecting the kinetics and thermodynamics of C−H and C−C bond activation/functionalization in this dissertation. Chapter 2 investigates methane C−H activation with a diiminopyridine nitride/nitridyl complex of 3d transition metals and main group elements via three competing … more
Date: December 2020
Creator: Sun, Zhicheng
open access

Computational Study of Intermolecular Interactions in Complex Chemical Systems

Description: This work discusses applications of computational simulations to a wide variety of chemical systems, to investigate intermolecular interactions to develop force field parameters and gain new insights into chemical reactivity and structure stability. First, we cover the characterization of hydrogen-bonding interactions in pyrazine tetracarboxamide complexes employing quantum topological analyses. Second we describe the use of quantum mechanical energy decomposition analysis (EDA) and non-covalen… more
Date: May 2020
Creator: Vazquez Montelongo, Erik Antonio

A Computational Study of Palladium (II) bis(NHC) Complexes and a Computational/Experimental Study of Gold (I) bisADC Complexes Utilizing Non-Covalent Interaction for Catalysis

Description: Carbene ligands over these years have become a heavily utilizes and effective ligand for catalysis. The diamino carbene class of ligands are slightly less understood. The effects of bis(carbene) ligand structures of palladium (II) catalysts were investigated using the ETS-NOCV method. The results showed that the amount of π-backbonding played a major role in the rate of the reaction for these NHC complexes. The amount of pi acceptance from the ligand increased in correlation to the length of th… more
This item is restricted from view until August 1, 2025.
Date: July 2023
Creator: Tiemann, Matthew Austin
open access

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Description: Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of th… more
Date: May 2010
Creator: Pierpont, Aaron
open access

Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Description: Chain conformations and the presence of chain overlaps and entanglements in dilute polymer solutions have been analyzed. The fundamental problem of existence of chain overlaps in dilute solutions is related to the drag reduction phenomenon (DR). Even though DR occurs in solutions with the concentration of only few parts per million (ppm), some theories suggest that entanglements may play an important role in DR mechanism. Brownian dynamics technique have been used to perform simulations of dilu… more
Date: August 1996
Creator: Drewniak, Marta

Copper Wire-Bonding Reliability: Mechanism and Prevention of Galvanic Aluminum Bond Pad Corrosion in Acidic Chloride Environments

Description: With the reliability requirements of automobile microelectronics pushing towards near 0 ppb levels of failure control, halide induced corrosion issues in wire bonded devices have to be tightly controlled to achieve such a high reliability goal. With real-time corrosion monitoring, for the first time we demonstrated that the explosive H2 evolution coupled with the oxygen reduction reaction, occurring at the critical Al/Cu interfaces, is the key driving force for the observed aggressive corrosion… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2020
Creator: Asokan, Muthappan

Corrosion Mechanism and Prevention of Wire Bonded Device in Microelectronic Manufacturing and Spectroscopic Investigation of Copper Etch Chemical Equilibria for High Density Interconnect Application

Description: In the first part of this dissertation work, Al bond pad corrosion behavior was investigated in the presence of common industrial contaminants such as chloride (Cl-) and fluoride (F-). Al corrosion while in direct contact with Cu displayed rapid hydrogen (H2) gas evolution and dendrite propagation. In contrast, Al without bimetallic contact showed only minor surface roughening. This observed difference in the corrosion mechanism between Cl- and F- is attributed to the solubility of the corrosio… more
Date: December 2021
Creator: Ashok Kumar, Goutham Issac
open access

Cross-Conjugation Effects on Fused β, β'–π–Extended Porphyrins

Description: Cross-conjugation in molecules has been seen in nature for many years but was not pursued due to the difficulty of their synthesis and their lack of stability. Recently, it has become more interesting due to the rise of molecular electronics. Linear conjugation serves well as the wires to conduct electrons, but molecular electronics are made up of more than just wires. Molecules are needed that possess an on/off switch that can allow or deter conduction. Cross-conjugated systems show promise in… more
Date: December 2023
Creator: Washburn, Spenser L.
Back to Top of Screen