You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Molecular Biology
Mutation Rate Analysis of the Human Mitochondrial D-loop and its Implications for Forensic Identity Testing

Mutation Rate Analysis of the Human Mitochondrial D-loop and its Implications for Forensic Identity Testing

Date: May 2000
Creator: Warren, Joseph E.
Description: To further facilitate mitochondrial DNA (mtDNA) sequence analysis for human identity testing, a better understanding of its mutation rate is needed. Prior to the middle 1990's the mutation rate applied to a forensic or evolutionary analysis was determined by phylogenetic means, This method involved calculating genetic distances as determined by amino acid or DNA sequence variability within or between species. The mutation rate as determined by this method ranged from 0.025-0.26 nucleotide substitutions/ site/ myr (million years). With the recent advent of mtDNA analysis as a tool in human identity testing an increased number of observations have recently come to light calling into question the mutation rate derived from the phylogenetic method. The mutation rate as observed from forensic analysis appears to be much higher than that calculated phylogenetically. This is an area that needs to be resolved in human identity testing. Mutations that occur within a maternal lineage can lead to a possible false exclusion of an individual as belonging to that lineage. A greater understanding of the actual rate of mutation within a given maternal lineage can assist in determining criteria for including or excluding individuals as belonging to that lineage. The method used to assess the mutation ...
Contributing Partner: UNT Libraries
A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation

A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation

Date: August 2001
Creator: Williamson, Phillip C.
Description: Natural transformation is the process by which cells take up DNA from the surrounding medium under physiological conditions, altering the genotype in a heritable fashion. This occurs without chemical or physical treatment of the cells. Certain Acinetobacter strains exhibit a strong tendency to incorporate homologous DNA into their chromosomes by natural transformation. Transformation in Acinetobacter exhibits several unique properties that indicate this system's superiority as a model for transformation studies or studies which benefit from the use of transformation as an experimental method of gene manipulation. Pseudomonas putida is the natural host of TOL plasmids, ranging between 50 kbp and 300 kbp in size and encoding genes for the catabolism of toluene, meta-toluate, and xylene. These very large, single-copy plasmids are difficult to isolate, manipulate, or modify in vitro. In this study, the TOL plasmid pDKR1 was introduced into Acinetobacter calcoaceticus strains and genetically engineered utilizing natural transformation as part of the process. Following engineering by transformation, the recombinant DNA molecule was returned to the native genetic background of the original host P. putida strain. Specific parameters for the successful manipulation of large plasmids by natural transformation in Acinetobacter were identified and are outlined. The effects of growth phase, total ...
Contributing Partner: UNT Libraries
Novel Role of Trypsin in Zebrafish

Novel Role of Trypsin in Zebrafish

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Alsrhani, Abdullah Falleh
Description: It has been shown previously in our laboratory that zebrafish produce trypsin from their gills when they are under stress, and this trypsin is involved in thrombocyte activation via PAR2 during gill bleeding. In this study, I investigated another role of the trypsin that is secreted from zebrafish. This investigation has demonstrated a novel role of trypsin in zebrafish. Not only did this investigation demonstrate the role of trypsin in zebrafish behavior, but also it showed that PAR2 might be the receptor that is involved in trypsin-mediated behavioral response. In addition, we have shown that Gq and ERK inhibitors are able to block the trypsin pathway and prevent the escaping behavior. Finally, the results of this investigation suggest that the cells that respond to trypsin are surface cells, which have an appearance similar to that of neuromast cells.
Contributing Partner: UNT Libraries
Origin and Role of Factor Viia

Origin and Role of Factor Viia

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Khandekar, Gauri
Description: Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, Factor VII and in small amounts in its activated form, Factor VIIa. However, the mechanism of initial generation of Factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases Factor VII activating protease, and hepsin play a role in activating Factor VII, however, it has remained controversial. In this work I estimated the levels of Factor VIIa and Factor VII for the first time in adult zebrafish plasma and also reevaluated the role of the above two serine proteases in activating Factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease did not reduce Factor VIIa levels while hepsin knockdown reduced Factor VIIa levels. After identifying role of hepsin in Factor VII activation in zebrafish, I wanted to identify novel serine proteases playing a role in Factor VII activation. However, a large scale knockdown of all serine proteases in zebrafish genome using available knockdown techniques is prohibitively expensive. Hence, I developed an inexpensive gene knockdown method which was validated with IIb gene knockdown, and knockdown all serine proteases ...
Contributing Partner: UNT Libraries
Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Date: December 2010
Creator: Akel, Amal
Description: Super-resolution 3D imaging was achieved using newly synthesized photoactivatable quantum dot (PAQ dot) probes. Quantum dots were modified with a novel quencher system to make them photoactivatable. The unique properties of these PAQ dots enable single-fluorophore localization in three dimensions using a confocal microscopy optical sectioning method. Myosin and tropomyosin of rabbit myofibrilar bundles were specifically labeled with the newly synthesized PAQ dot. A sufficient number of single quantum dots were photoactivated, localized and reduced to their centroid and then reconstructed to a super-resolution image. The acquired super-resolution image shows a lateral and an axial sub-diffraction resolution and demonstrates ultrafine striations with widths less than 70 nm that are not evident by conventional confocal microscopy. The striations appear to be related to nebulin thin filament binding protein. This newly developed imaging system is cutting edge for its high resolution and localization as well its simplicity and convenience.
Contributing Partner: UNT Libraries
Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene

Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene

Date: December 2007
Creator: Lee, Yi-Ching
Description: The Medicago truncatula NIP gene is located on M. truncatula Linkage Group 1. Informative recombinants showed crossovers that localize the NIP gene between markers 146O17 and 23C16D. Marker 164N9 co-segregates with the NIP gene, and the location of marker 164N9 is between markers 146O17 and 23C16D. Based upon data from the Medicago genome sequencing project, a subset of the model legume Medicago truncatula bacterial artificial chromosomes (BACs) were used to create a physical map on the DNA in this genetic internal. BACs near the potential NIP gene location near marker 164N9 were identified, and used in experiments to predict the physical map by a BAC-by-BAC strategy. Using marker 164N9 as a center point, and chromosome walking outward, the physical map toward markers 146O17 and 23C16D was built. The chromosome walk consisted of a virtual walk, made with existing sequence of BACs from the Medicago genome project, hybridizations to filters containing BAC DNA, and PCR reactions to confirm that predicted overlapping BACs contained DNA that yielded similar PCR products. In addition, the primers which are made for physical mapping via PCR could be good genetic markers helpful in discovering the location of the NIP gene. As a result of efforts repotted ...
Contributing Partner: UNT Libraries
A Possible Role of Ascorbate in Boron Deficient Radish (Raphanus sativa L. cv. Cherry Belle)

A Possible Role of Ascorbate in Boron Deficient Radish (Raphanus sativa L. cv. Cherry Belle)

Date: August 2001
Creator: Sedlacek, Theresa D.
Description: The most apparent symptom of boron deficiency in higher plants is a cessation of growth. Deficiency causes a reduction in ascorbate concentration and the absorption of nutrient ions. Addition of ascorbate temporarily relieves deficiency symptoms. In boron sufficient plants the addition of ascorbate to media causes an increased uptake of nutrients. In an attempt to discover if ascorbate addition to deficient plants causes increased ion uptake, radish plants were grown hydroponically in four different strengths of boron solution. A colorimetric assay for phosphorus was performed both before and after supplementation. Results, however, were inconclusive.
Contributing Partner: UNT Libraries
Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from  Burkholderia cepacia 25416 and Construction of a  pyrB1 Knock-out Mutant

Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from Burkholderia cepacia 25416 and Construction of a pyrB1 Knock-out Mutant

Date: December 2004
Creator: Kim, Seongcheol
Description: Burkholderia cepacia is a common soil bacterium of significance in agriculture and bioremediation. B. cepacia is also an opportunistic pathogen of humans causing highly communicable pulmonary infections in cystic fibrosis and immunocompromized patients. The pyrB gene encoding ATCase was cloned and ATCase was purified by the glutathione S-transferase gene fusion system. The ATCase in B. cepacia has been previously classified as a class A enzyme by Bethell and Jones. ATCase activity gels showed that B. cepacia contained a holoenzyme pyrBC complex of 550 kDa comprised of 47 kDa pyrB and 45 kDa pyrC subunits. In the course of purifying the enzyme, trimeric subunits of 140 kDa and 120 kDa were observed as well as a unique proteolysis of the enzyme. The 47 kDa ATCase subunits were cleaved to 40 kDa proteins, which still demonstrated high activity as trimers. The proteolysis site is between Ser74 and Val75 residues. To confirm this, we converted the Ser74 residue to an Ala and to an Arg by site-directed mutagenesis. After this primary sequence changed, the proteolysis of ATCase was not observed. To further investigate the characteristics of B. cepacia pyrB gene, a pyrB knock-out (pyrB-) was constructed by in vitro mutagenesis. In the assay, ...
Contributing Partner: UNT Libraries
Purification of Aspartate Transcarbamoylase from  Moraxella (Branhamella) catarrhalis

Purification of Aspartate Transcarbamoylase from Moraxella (Branhamella) catarrhalis

Date: August 2001
Creator: Stawska, Agnieszka A.
Description: The enzyme, aspartate transcarbamoylase (ATCase) from Moraxella (Branhamella) catarrhalis, has been purified. The holoenzyme has a molecular mass of approximately 510kDa, harbors predominantly positive charges and is hydrophobic in nature. The holoenzyme possesses two subunits, a smaller one of 40 kDa and a larger one of 45 kDa. A third polypeptide has been found to contribute to the overall enzymatic activity, having an approximate mass of 55 kDa. The ATCase purification included the generation of cell-free extract, streptomycin sulfate cut, 60 °C heat step, ammonium sulfate cut, dialysis and ion, gel-filtration and hydrophobic interaction chromatography. The enzyme's performance throughout purification steps was analyzed on activity and SDS-PAGE gradient gels. Its enzymatic, specific activities, yield and fold purification, were also determined.
Contributing Partner: UNT Libraries
Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764.

Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764.

Access: Use of this item is restricted to the UNT Community.
Date: December 2010
Creator: Chou, Chia-Ni
Description: Cyanide is a well known toxicant that arises in the environment from both biological and industrial sources. Bacteria have evolved novel coping mechanisms for cyanide and function as principal agents in the biosphere for cyanide recycling. Some bacteria exhibit the unusual ability of growing on cyanide as the sole nitrogen source. One such organism is Pseudomonas fluorescens NCIMB 11764 (Pf11764) which employs a novel oxidative mechanism for detoxifying and assimilating cyanide. A unique complex of enzymes referred to as cyanide oxygenase (CNO) is responsible for this ability converting cyanide to ammonia which is then assimilated. Because one component of the four member CNO complex was previously shown to act on cyanide independent of the other members, its characterization was sought as a means of gaining a better understanding of the overall catalytic mechanism of the complex. Preliminary studies suggested that the enzyme belonged to a subset of nitrilase enzymes known as cyanide dihydratases (CynD), however, a cynD-like gene in Pf11764 could not be detected by PCR. Instead, a separate nitrilase (Nit) linked to cyanide metabolism was detected. The corresponding nit gene was shown to be one of a conserved set of nit genes traced to a unique cluster in bacteria ...
Contributing Partner: UNT Libraries