You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Engineering Technology
Sunlight readability and luminance characteristics of light-emitting diode push button switches.

Sunlight readability and luminance characteristics of light-emitting diode push button switches.

Date: May 2004
Creator: Fitch, Robert J.
Description: Lighted push button switches and indicators serve many purposes in cockpits, shipboard applications and military ground vehicles. The quality of lighting produced by switches is vital to operators' understanding of the information displayed. Utilizing LED technology in lighted switches has challenges that can adversely affect lighting quality. Incomplete data exists to educate consumers about potential differences in LED switch performance between different manufacturers. LED switches from four different manufacturers were tested for six attributes of lighting quality: average luminance and power consumption at full voltage, sunlight readable contrast, luminance contrast under ambient sunlight, legend uniformity, and dual-color uniformity. Three of the four manufacturers have not developed LED push button switches that meet lighting quality standards established with incandescent technology.
Contributing Partner: UNT Libraries
Surface Plasmon Based Nanophotonic Optical Emitters

Surface Plasmon Based Nanophotonic Optical Emitters

Access: Use of this item is restricted to the UNT Community.
Date: December 2005
Creator: Vemuri, Padma Rekha
Description: Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the ...
Contributing Partner: UNT Libraries
Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions.

Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions.

Date: December 2003
Creator: Carter, Clinton E.
Description: Within the nuclear industry, there have been numerous instances of radio transmissions interfering with sensitive plant equipment. Instances documented vary from minor instrument fluctuations to major plant transients including reactor trips. With the nuclear power industry moving toward digital technologies for control and reactor protection systems, concern exists regarding their potential susceptibility to contemporary wireless telecommunications technologies. This study evaluates the susceptibility of Comanche Peak's planned turbine controls upgrade to IEEE 802.11 compliant wireless radio emissions. The study includes a review of previous research, industry emissions standards, and technical overview of the various IEEE 802.11 protocols and details the testing methodology utilized to evaluate the digital control system. The results of this study concluded that the subject digital control system was unaffected by IEEE 802.11 compliant emissions even when the transmitter was in direct contact with sensitive components.
Contributing Partner: UNT Libraries
Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation.

Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Vemuri, Prasanna
Description: Cubic boron nitride (cBN) synthesis has gained lot of interest during the past decade as it offers outstanding physical and chemical properties like high hardness, high wear resistance, and chemical inertness. Despite of their excellent properties, every application of cBN is hindered by high compressive stresses and poor adhesion. The cost of equipment is also high in almost all the techniques used so far. This thesis deals with the synthesis of cubic phase of boron nitride on Si (100) wafers using electron beam evaporator, a low cost equipment that is capable of depositing films with reduced stresses. Using this process, need of ion beam employed in ion beam assisted processes can be eliminated thus reducing the surface damage and enhancing the film adhesion. Four sets of samples have been deposited by varying substrate temperature and the deposition time. scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) techniques have been used to determine the structure and composition of the films deposited. X-ray diffraction (XRD) was performed on one of the samples to determine the thickness of the film deposited for the given deposition rate. Several samples showed dendrites being formed as ...
Contributing Partner: UNT Libraries
Using Motor Electrical Signature Analysis to Determine the Mechanical Condition of Vane-Axial Fans

Using Motor Electrical Signature Analysis to Determine the Mechanical Condition of Vane-Axial Fans

Date: August 2002
Creator: Doan, Donald Scott
Description: The purpose of this research was a proof of concept using a fan motor stator as transducer to monitor motor rotor and attached axial fan for mechanical motion. The proof was to determine whether bearing faults and fan imbalances could be detected in vane-axial fans using Motor Electrical Signature Analysis (MESA). The data was statistically analyzed to determine if the MESA systems could distinguish between baseline conditions and discrete fault frequencies for the three test conditions: bearing inner race defect, bearing outer race defect, and fan imbalance. The statistical conclusions for these proofs of concept were that MESA could identify all three faulted conditions.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST